-
Health Care Manag Sci · Sep 2020
Prediction of emergency department patient disposition decision for proactive resource allocation for admission.
- Seung-Yup Lee, Ratna Babu Chinnam, Evrim Dalkiran, Seth Krupp, and Michael Nauss.
- Haskayne School of Business, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada. seungyup.lee@haskayne.ucalgary.ca.
- Health Care Manag Sci. 2020 Sep 1; 23 (3): 339-359.
AbstractWe investigate the capability of information from electronic health records of an emergency department (ED) to predict patient disposition decisions for reducing "boarding" delays through the proactive initiation of admission processes (e.g., inpatient bed requests, transport, etc.). We model the process of ED disposition decision prediction as a hierarchical multiclass classification while dealing with the progressive accrual of clinical information throughout the ED caregiving process. Multinomial logistic regression as well as machine learning models are built for carrying out the predictions. Utilizing results from just the first set of ED laboratory tests along with other prior information gathered for each patient (2.5 h ahead of the actual disposition decision on average), our model predicts disposition decisions with positive predictive values of 55.4%, 45.1%, 56.9%, and 47.5%, while controlling false positive rates (1.4%, 1.0%, 4.3%, and 1.4%), with AUC values of 0.97, 0.95, 0.89, and 0.84 for the four admission (minor) classes, i.e., intensive care unit (3.6% of the testing samples), telemetry unit (2.2%), general practice unit (11.9%), and observation unit (6.6%) classes, respectively. Moreover, patients destined to intensive care unit present a more drastic increment in prediction quality at triage than others. Disposition decision classification models can provide more actionable information than a binary admission vs. discharge prediction model for the proactive initiation of admission processes for ED patients. Observing the distinct trajectories of information accrual and prediction quality evolvement for ED patients destined to different types of units, proactive coordination strategies should be tailored accordingly for each destination unit.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.