-
Proc. Natl. Acad. Sci. U.S.A. · Dec 2012
Type II₁ factors satisfying the spatial isomorphism conjecture.
- Jan Cameron, Erik Christensen, Allan M Sinclair, Roger R Smith, Stuart A White, and Alan D Wiggins.
- Department of Mathematics, Vassar College, Poughkeepsie, NY 12604, USA.
- Proc. Natl. Acad. Sci. U.S.A. 2012 Dec 11; 109 (50): 20338-43.
AbstractThis paper addresses a conjecture in the work by Kadison and Kastler [Kadison RV, Kastler D (1972) Am J Math 94:38-54] that a von Neumann algebra M on a Hilbert space H should be unitarily equivalent to each sufficiently close von Neumann algebra N, and, moreover, the implementing unitary can be chosen to be close to the identity operator. This conjecture is known to be true for amenable von Neumann algebras, and in this paper, we describe classes of nonamenable factors for which the conjecture is valid. These classes are based on tensor products of the hyperfinite II(1) factor with crossed products of abelian algebras by suitably chosen discrete groups.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.