• European radiology · Oct 2020

    Volumetric quantification of lung MR signal intensities using ultrashort TE as an automated score in cystic fibrosis.

    • Ilyes Benlala, Sophie Point, Cédric Leung, Patrick Berger, Jason C Woods, Chantal Raherison, François Laurent, Julie Macey, and Gaël Dournes.
    • Univ. Bordeaux, F-33000, Bordeaux, France.
    • Eur Radiol. 2020 Oct 1; 30 (10): 5479-5488.

    ObjectivesThe study aimed to validate automated quantification of high and low signal intensity volumes using ultrashort echo-time MRI, with CT and pulmonary function test (PFT) as references, to assess the severity of structural alterations in cystic fibrosis (CF).MethodsThis prospective study was performed in a single center between May 2015 and September 2017. Participants with CF completed clinical examination, CT, MRI, and PFT the same day during routine clinical follow-up (M0), and then 1 year after (M12) except for CT. Using MRI, percentage high (%MR-HSV), low (%MR-LSV), and total abnormal (%MR-TSV) signal intensity volumes were recorded, as well as their corresponding attenuation values using CT (%CT-HAV, %CT-LAV, %CT-TAV, respectively). Automated quantifications and visual Bhalla score were evaluated independently by two observers. Correlations were assessed using the Spearman test, comparisons using the Mann-Whitney test, and reproducibility using the intraclass correlation coefficient (ICC).ResultsA total of 30 participants were enrolled (median age 27 years, 18 men). At M0, there was a good correlation between %MR-HSV and %CT-HAV (ρ = 0.70; p < 0.001) and %MR-LSV and %CT-LAV (ρ = 0.60; p < 0.001). Automated MR metrics correlated to PFTs and Bhalla score (p < 0.05) while %MR-TSV was significantly different between CF with and without respiratory exacerbation (p = 0.01) at both M0 and M12. The variation of %MR-HSV correlated to the variation of FEV1% at PFT (ρ = - 0.49; p = 0.008). Reproducibility was almost perfect (ICCs > 0.95).ConclusionsAutomated quantification of abnormal signal intensity volumes relates to CF severity and allows reproducible cross-sectional and longitudinal assessment.Trial RegistrationClinical trial identifier: NCT02449785 KEY POINTS: • Cross-sectionally, the automated quantifications of high and low signal intensity volumes at UTE correlated to the quantification of high and low attenuation using CT as reference. • Longitudinally, the variation of high signal intensity volume at UTE correlated to the variation of pulmonary function test and was significantly reduced in CF with an improvement in exacerbation status. • Automated quantification of abnormal signal intensity volumes are objective and reproducible tools to assess structural alterations in CF and follow-up longitudinally, for both research and clinical purposes.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.