• Ultrasound Obstet Gynecol · Mar 2019

    Prenatal brain imaging for predicting need for postnatal hydrocephalus treatment in fetuses that had neural tube defect repair in utero.

    • A Zarutskie, C Guimaraes, M Yepez, P Torres, A Shetty, H Sangi-Haghpeykar, W Lee, J Espinoza, A A Shamshirsaz, A Nassr, M A Belfort, W E Whitehead, and M Sanz Cortes.
    • Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA.
    • Ultrasound Obstet Gynecol. 2019 Mar 1; 53 (3): 324-334.

    ObjectiveTo determine if brain imaging in fetuses that underwent prenatal repair of neural tube defect (NTD) can predict the need for postnatal hydrocephalus treatment (HT) in the first year postpartum.MethodsThis was a retrospective study of fetuses diagnosed with open NTD that had in-utero myelomeningocele repair between April 2014 and April 2016. Independent variables were collected from four chronological sets of fetal images: presurgery ultrasound, presurgery magnetic resonance imaging (MRI), 6-week postsurgery MRI and predelivery ultrasound. The following independent variables were collected from all image sets unless otherwise noted: gestational age, head circumference, mean ventricular width, ventricular volume (MRI only), hindbrain herniation (HBH) score (MRI only), and level of lesion (LOL), defined as the upper bony spinal defect (presurgery ultrasound only). Based on these measurements, additional variables were defined and calculated including change in degree of HBH, ventricular width growth (mm/week) and ventricular volume growth (mL/week). The need for HT (by either ventriculoperitoneal shunt or endoscopic third ventriculostomy with choroid plexus cauterization) was determined by a pediatric neurosurgeon using clinical and radiographic criteria; a secondary analysis was performed using the MOMS trial criteria for hydrocephalus. The predictive value of each parameter was assessed by receiver-operating characteristics curve and logistic regression analyses.ResultsFifty affected fetuses were included in the study, of which 32 underwent open hysterotomy and 18 fetoscopic repair. Two neonates from the open hysterotomy group died and were excluded from the analysis. The mean gestational ages for the presurgery ultrasound, presurgery MRI, postsurgery MRI and predelivery ultrasound were 21.8 ± 2.1, 22.0 ± 1.8, 30.4 ± 1.6 and 31.0 ± 4.9 weeks, respectively. A total of 16 subjects required HT. The area under the curve (AUC) of predictive accuracy for HT showed that HBH grading on postsurgery MRI had the strongest predictive value (0.86; P < 0.01), outperforming other predictors such as postsurgery MRI ventricular volume (0.73; P = 0.03), MRI ventricular volume growth (0.79; P = 0.01), change in HBH (0.82; P = 0.01), and mean ventricular width on predelivery ultrasound (0.73; P = 0.01). Other variables, such as LOL, mean ventricular width on presurgery ultrasound, mean ventricular width on presurgery and postsurgery MRI, and ventricular growth assessment by MRI or ultrasound, had AUCs < 0.7. Optimal cut-offs of the variables with the highest AUC were evaluated to improve prediction. A combination of ventricular volume growth ≥ 2.02 mL/week and/or HBH of 3 on postsurgery MRI were the optimal cut-offs for the best prediction (odds ratio (OR), 42 (95% CI, 4-431); accuracy, 84%). Logistic regression analyses showed that persistence of severe HBH 6 weeks after surgery by MRI is one of the best predictors for HT (OR, 39 (95% CI, 4-369); accuracy, 84%). There was no significant change in the results when the MOMS trial criteria for hydrocephalus were used as the dependent variable.ConclusionsPersistence of HBH on MRI 6 weeks after prenatal NTD repair independently predicted the need for postnatal HT better than any ultrasound- or other MRI-derived measurements of ventricular characteristics. These results should aid in prenatal counseling and add support to the hypothesis that HBH is a significant driver of hydrocephalus in myelomeningocele patients. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…