-
- Richard H Kallet, Justin S Phillips, Travis J Summers, Gregory Burns, Lance Pangilinan, Logan Carothers, Earl R Mangalindan, and Michael S Lipnick.
- Respiratory Care Division. richkallet@gmail.com.
- Respir Care. 2021 Nov 1; 66 (11): 164916561649-1656.
BackgroundThe generation of excessive inspiratory muscle pressure (Pmus) during assisted mechanical ventilation in patients with respiratory failure may result in acute respiratory muscle injury and/or fatigue, and exacerbate ventilator-induced lung injury. A readily available noninvasive surrogate measure of Pmus may help in titrating both mechanical ventilation and sedation to minimize these risks. This bench study explored the feasibility and accuracy of using a ventilator's expiratory pause hold function to measure Pmus across multiple operators.MethodsA standardized technique for executing a brief (<1 s) expiratory pause maneuver was used to measure the airway occlusion pressure change (Δ Paw) by using 3 simulated Pmus (Δ Pmus: 5, 10, 15 cm H2O) under (1) pressure support ventilation (0, 10, 15 cm H2O), (2) volume and pressure-regulated volume ventilation, (3) flow and pressure-triggering, and (4) varying levels of PEEP and pressure-rise time. Individual and grouped measurements were made by 4-7 clinicians on 3 different ventilators. The concordance between occlusion Δ Paw and Δ Pmus was arbitrarily set at ≤ 2 cm H2O. Data were evaluated by using analysis of variance and the Tukey-Kramer posttest. Correlation was assessed by using the Pearson R test; bias and precision were assessed by using the Bland-Altman method. Alpha was set at 0.05.ResultsGrouped expiratory pause maneuver measurements of occlusion Δ Paw across simulated Δ Pmus, mode and level of ventilatory support showed reasonable concordance, regardless of the ventilator used. Occlusion Δ Paw accuracy frequently decreased by ∼3 cm H2O when both pressure support ventilation and Δ Pmus reached 15 cm H2O. Expiratory pause maneuver accuracy was not affected by trigger mechanism and/or sensitivity, PEEP, or the post-trigger pressurization rate. In general, only small differences in Δ Paw occurred among the individual operators.ConclusionsThe expiratory pause maneuver generally provided reproducible, stable approximations of Δ Pmus across ventilators and ventilator settings, and a range of simulated effort. Technique standardization produced relatively consistent results across multiple operators. The expiratory pause maneuver seemed feasible for general use in monitoring inspiratory effort during assisted mechanical ventilation.Copyright © 2021 by Daedalus Enterprises.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.