• Experimental physiology · Aug 2018

    Oxygen therapy improves cerebral oxygen delivery and neurovascular function in hypoxaemic chronic obstructive pulmonary disease patients.

    • Ryan L Hoiland, Suzana Mladinov, Otto F Barak, Christopher K Willie, Tanja Mijacika, Mike Stembridge, Zeljko Dujic, and Philip N Ainslie.
    • Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada.
    • Exp. Physiol. 2018 Aug 1; 103 (8): 1170-1177.

    New FindingsWhat is the central question of this study? How does oxygen therapy influence cerebral blood flow, cerebral oxygen delivery and neurovascular function in chronic obstructive pulmonary disease patients? What is the main finding and its importance? Oxygen therapy improves cerebral oxygen delivery and neurovascular function in chronic obstructive pulmonary disease patients. This improvement in cerebral oxygen delivery and neurovascular function might provide a physiological link between oxygen therapy and a reduced risk of cerebrovascular disease (e.g. stroke, mild cognitive impairment and dementia) in chronic obstructive pulmonary disease.AbstractWe investigated the role of hypoxaemia in cerebral blood flow (CBF), oxygen delivery (CDO2 ) and neurovascular coupling (coupling of CBF to neural activity; NVC) in hypoxaemic chronic obstructive pulmonary disease (COPD) patients (n = 14). Resting CBF (duplex ultrasound), peripheral oxyhaemoglobin saturation (SpO2; pulse-oximetry) and NVC (transcranial Doppler) were assessed before and after a 20 min wash-in of supplemental oxygen (∼3 l min-1 ). The peripheral oxyhaemoglobin saturation increased from 91.0 ± 3.3 to 97.4 ± 3.0% (P < 0.01), whereas CBF was unaltered (593.0 ± 162.8 versus 590.1 ± 138.5 ml min-1 ; P = 0.91) with supplemental O2 . In contrast, both CDO2 (98.1 ± 25.7 versus 108.7 ± 28.4 ml dl-1 ; P = 0.02) and NVC were improved. Specifically, the posterior cerebral artery cerebrovascular conductance was increased to a greater extent after O2 normalization (+40%, from 20.4 ± 9.9 to 28.0 ± 10.4% increase in conductance; P = 0.04), whereas the posterior cerebral artery cerebrovascular resistance decreased to a greater extent during O2 normalization (+22%, from -16.7 ± 7.3 to -21.4 ± 6.6% decrease in resistance; P = 0.04). The cerebral vasculature of COPD patients appears insensitive to oxygen, because CBF was unaltered in response to O2 supplementation leading to improved CDO2 . In patients, the improvements in CDO2 and neurovascular function with supplemental O2 may underlie the cognitive benefits associated with O2 therapy.© 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.