• Neuroscience letters · Apr 2006

    Comparative Study

    Optical coherence tomography reveals in vivo cortical plasticity of adult mice in response to peripheral neuropathic pain.

    • Yasuhiro Ooi, Yasuhiko Satomura, Junji Seki, Toshio Yanagida, and Akitoshi Seiyama.
    • Division of Pathogenesis and Control of Oral Disease, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.
    • Neurosci. Lett. 2006 Apr 10; 397 (1-2): 35-9.

    AbstractWe examined neural plasticity in mice in vivo using optical coherence tomography (OCT) of primary somatosensory (S1) and motor (M1) cortices of mice under the influence of sciatic nerve chronic constriction injury (CCI), a model of neuropathic pain widely utilized in rats. The OCT system used in this study provided cross-sectional images of the cortical tissue of mice up to a depth of about 1mm with longitudinal resolution up to 11 microm. This is the first study to evaluate neural plasticity in vivo using OCT. CCI mice exhibited cold allodynia and spontaneous pain behaviors, which are signs of neuropathic pain, 30 days after sciatic nerve ligation, when OCT observation of S1 and M1 cortices was carried out. The scattering intensity of near-infrared light within the hind paw area of S1 and M1 regions in the contralateral hemisphere was significantly higher than in the ipsilateral hemisphere. These CCI-induced increases in scattering intensity within cortical regions associated with the hind paw probably reflect elevated neural activity associated with neuropathic pain. Synapses and mitochondria are believed to have high light scattering coefficients, since they contain remarkably high concentrations of proteins and complicated membrane structure. Number densities of mitochondria and synapses are known to increase in parallel with increases in neural activity. Our findings thus suggest that neuropathic pain gives rise to neural plasticity within the hind paw area of S1 and M1 contralateral to the ligated sciatic nerve.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…