• Crit Care · Sep 2021

    Machine-learning-based COVID-19 mortality prediction model and identification of patients at low and high risk of dying.

    • Mohammad M Banoei, Roshan Dinparastisaleh, Ali Vaeli Zadeh, and Mehdi Mirsaeidi.
    • Department of Critical Care Medicine, University of Calgary, Alberta, Canada.
    • Crit Care. 2021 Sep 8; 25 (1): 328.

    BackgroundThe coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-Cov2 virus has become the greatest health and controversial issue for worldwide nations. It is associated with different clinical manifestations and a high mortality rate. Predicting mortality and identifying outcome predictors are crucial for COVID patients who are critically ill. Multivariate and machine learning methods may be used for developing prediction models and reduce the complexity of clinical phenotypes.MethodsMultivariate predictive analysis was applied to 108 out of 250 clinical features, comorbidities, and blood markers captured at the admission time from a hospitalized cohort of patients (N = 250) with COVID-19. Inspired modification of partial least square (SIMPLS)-based model was developed to predict hospital mortality. Prediction accuracy was randomly assigned to training and validation sets. Predictive partition analysis was performed to obtain cutting value for either continuous or categorical variables. Latent class analysis (LCA) was carried to cluster the patients with COVID-19 to identify low- and high-risk patients. Principal component analysis and LCA were used to find a subgroup of survivors that tends to die.ResultsSIMPLS-based model was able to predict hospital mortality in patients with COVID-19 with moderate predictive power (Q2 = 0.24) and high accuracy (AUC > 0.85) through separating non-survivors from survivors developed using training and validation sets. This model was obtained by the 18 clinical and comorbidities predictors and 3 blood biochemical markers. Coronary artery disease, diabetes, Altered Mental Status, age > 65, and dementia were the topmost differentiating mortality predictors. CRP, prothrombin, and lactate were the most differentiating biochemical markers in the mortality prediction model. Clustering analysis identified high- and low-risk patients among COVID-19 survivors.ConclusionsAn accurate COVID-19 mortality prediction model among hospitalized patients based on the clinical features and comorbidities may play a beneficial role in the clinical setting to better management of patients with COVID-19. The current study revealed the application of machine-learning-based approaches to predict hospital mortality in patients with COVID-19 and identification of most important predictors from clinical, comorbidities and blood biochemical variables as well as recognizing high- and low-risk COVID-19 survivors.© 2021. The Author(s).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.