• J Radiol Prot · Aug 2021

    Experimental examination of radiation doses from cardiac and liver CT perfusion in a phantom study as a function of organ, age and sex.

    • Denise Bos, Britta König, Sebastian Blex, Sebastian Zensen, Marcel Opitz, Sandra Maier, Michael Forsting, Waldemar Zylka, Hilmar Kühl, Axel Wetter, and Nika Guberina.
    • Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany.
    • J Radiol Prot. 2021 Aug 18; 41 (3).

    AbstractCardiac and liver computed tomography (CT) perfusion has not been routinely implemented in the clinic and requires high radiation doses. The purpose of this study is to examine the radiation exposure and technical settings for cardiac and liver CT perfusion scans at different CT scanners. Two cardiac and three liver CT perfusion protocols were examined with the N1 LUNGMAN phantom at three multi-slice CT scanners: a single-source (I) and second- (II) and third-generation (III) dual-source CT scanners. Radiation doses were reported for the CT dose index (CTDIvol) and dose-length product (DLP) and a standardised DLP (DLP10cm) for cardiac and liver perfusion. The effective dose (ED10cm) for a standardised scan length of 10 cm was estimated using conversion factors based on the International Commission on Radiological Protection (ICRP) 110 phantoms and tissue-weighting factors from ICRP 103. The proposed total lifetime attributable risk of developing cancer was determined as a function of organ, age and sex for adults. Radiation exposure for CTDIvol, DLP/DLP10 cmand ED10 cmduring CT perfusion was distributed as follows: for cardiac perfusion (II) 144 mGy, 1036 mGy·cm/1440 mGy·cm and 39 mSv, and (III) 28 mGy, 295 mGy·cm/279 mGy·cm and 8 mSv; for liver perfusion (I) 225 mGy, 3360 mGy·cm/2249 mGy·cm and 54 mSv, (II) 94 mGy, 1451 mGy·cm/937 mGy·cm and 22 mSv, and (III) 74 mGy, 1096 mGy·cm/739 mGy·cm and 18 mSv. The third-generation dual-source CT scanner applied the lowest doses. Proposed total lifetime attributable risk increased with decreasing age. Even though CT perfusion is a high-dose examination, we observed that new-generation CT scanners could achieve lower doses. There is a strong impact of organ, age and sex on lifetime attributable risk. Further investigations of the feasibility of these perfusion scans are required for clinical implementation.© 2021 Society for Radiological Protection. Published on behalf of SRP by IOP Publishing Limited. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.