-
- Tao Tan, Jiacun Xie, Zhiqian Tong, Tiaotiao Liu, Xiaojia Chen, and Xin Tian.
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China. tantao_tijmu@126.com
- Brain Res. 2013 Jul 3; 1520: 23-35.
AbstractRepetitive transcranial magnetic stimulation (rTMS) is able to induce alteration in cortical activity and excitability that outlast the period of stimulation, which is long-term depre-ssion (LTD) or long-term potentiation (LTP)-like. Accumulating evidence shows that Na(+), Ca(2+) and K(+) channels are important for the regulation of neuronal excitability. To investigate the possible mechanisms of rTMS on regulation of intrinsic excitability in hippocampal neurons, the male or female Sprague-Dawley rats aged 2-3 d or 7-8 d were treated with 14 or 7-d's low frequency (1 Hz) rTMS (400 stimuli/d), respectively. After that, the effects of rTMS on ion channels such as Na(+)-channel, A-type K(+)-channel and Ca(2+)-channel in rat hippocampal CA1 pyramidal neurons were performed by standard whole-cell patch-clamp technique. The results showed that the peak amplitude and maximal rise slope of evoked single action potential (AP) were significantly increased after 14-d's rTMS treatment. Meanwhile, the AP threshold was significantly more depolarized in neurons after 14-d's rTMS treatment than neurons in control group that without rTMS treatment. The spontaneous excitatory post-synaptic currents (sEPSCs) frequency and amplitude of CA1 pyramidal neurons in groups with rTMS treatment (both 7 d and 14 d) were obviously increased compared with the age-matched control group. Furthermore, we found that electrophysiological properties of Na(+)-channel were markedly changed after rTMS treatment, including negative-shifted activation and inactivation curves, as well as fasten recovery rate. After rTMS application, the IA amplitude of K(+)-channel was reduced; the activation and inactivation curves of K(+)-channel were significantly shifted to right. Time constant of recovery from inactivation was also more rapid. Moreover, rTMS induced an obvious increment in the maximal current peak amplitude of Ca(2+)-channel. At the same time, there was a significant rightward shift in the activation curve and inactivation curves of Ca(2+)-channel. These data suggest that rTMS can enhance the AP and sEPSCs of hippocampal CA1 neurons. Altered electrophysiological properties of Na(+)-channel, A-type K(+) channels and Ca(2+) channels contribute to the underling mechanisms of rTMS-induced up-regulation of neural excitability.Copyright © 2013. Published by Elsevier B.V.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.