-
- Jun Li, Qingguang Chen, Xiaojuan Hu, Pei Yuan, Longtao Cui, Liping Tu, Ji Cui, Jingbin Huang, Tao Jiang, Xuxiang Ma, Xinghua Yao, Changle Zhou, Hao Lu, and Jiatuo Xu.
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Int J Med Inform. 2021 May 1; 149: 104429.
BackgroundDiabetes is a chronic noncommunicable disease with high incidence rate. Diabetics without early diagnosis or standard treatment may contribute to serious multisystem complications, which can be life threatening. Timely detection and intervention of prediabetes is very important to prevent diabetes, because it is inevitable in the development and progress of the disease.ObjectiveOur objective was to establish the predictive model that can be applied to evaluate people with blood glucose in high and critical state.MethodsWe established the diabetes risk prediction model formed by a combined TCM tongue diagnosis with machine learning techniques. 1512 subjects were recruited from the hospital. After data preprocessing, we got the dataset 1 and dataset 2. Dataset 1 was used to train classical machine learning model, while dataset 2 was used to train deep learning model. To evaluate the performance of the prediction model, we used Classification Accuracy(CA), Precision, Recall, F1-score, Precision-Recall curve(P-R curve), Area Under the Precision-Recall curve(AUPRC), Receiver Operating Characteristic curve(ROC curve), Area Under the Receiver Operating Characteristic curve(AUROC), then selected the best diabetes risk prediction model.ResultsOn the test set of dataset 1, the CA of non-invasive Stacking model was 71 %, micro average AUROC was 0.87, macro average AUROC was 0.84, and micro average AUPRC was 0.77. In the critical blood glucose group, the AUROC was 0.84, AUPRC was 0.67. In the high blood glucose group, AUROC was 0.87, AUPRC was 0.83. On the validation set of dataset 2, the CA of ResNet50 model was 69 %, micro average AUROC was 0.84, macro average AUROC was 0.83, and micro average AUPRC was 0.73. In the critical blood glucose group, AUROC was 0.88, AUPRC was 0.71. In the high blood glucose group, AUROC was 0.80, AUPRC was 0.76. On the test set of dataset 2, the CA of ResNet50 model was 65 %, micro average AUROC was 0.83, macro average AUROC was 0.82, and micro average AUPRC was 0.71. In the critical blood glucose group, the prediction of AUROC was 0.84, AUPRC was 0.60. In the high blood glucose group, AUROC was 0.87, AUPRC was 0.71.ConclusionsTongue features can improve the prediction accuracy of the diabetes risk prediction model formed by classical machine learning model significantly. In addition to the excellent performance, Stacking model and ResNet50 model which were recommended had non-invasive operation and were easy to use. Stacking model and ResNet50 model had high precision, low false positive rate and low misdiagnosis rate on detecting hyperglycemia. While on detecting blood glucose value in critical state, Stacking model and ResNet50 model had a high sensitivity, a low false negative rate and a low missed diagnosis rate. The study had proved that the differential changes of tongue features reflected the abnormal glucose metabolism, thus the diabetes risk prediction model formed by a combined TCM tongue diagnosis and machine learning technique was feasible.Copyright © 2021 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.