-
- Nophar Geifman and Anthony D Whetton.
- Centre for Health Informatics, Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Vaughan House, Portsmouth Street, Manchester, M13 9GB, UK. nophar.geifman@manchester.ac.uk.
- J Transl Med. 2020 Aug 3; 18 (1): 297.
BackgroundThe severe acute respiratory syndrome virus SARS-CoV-2, a close relative of the SARS-CoV virus, is the cause of the recent COVID-19 pandemic affecting, to date, over 14 million individuals across the globe and demonstrating relatively high rates of infection and mortality. A third virus, the H5N1, responsible for avian influenza, has caused infection with some clinical similarities to those in COVID-19 infections. Cytokines, small proteins that modulate immune responses, have been directly implicated in some of the severe responses seen in COVID-19 patients, e.g. cytokine storms. Understanding the immune processes related to COVID-19, and other similar infections, could help identify diagnostic markers and therapeutic targets.MethodsHere we examine data of cytokine, immune cell types, and disease associations captured from biomedical literature associated with COVID-19, Coronavirus in general, SARS, and H5N1 influenza, with the objective of identifying potentially useful relationships and areas for future research.ResultsCytokine and cell-type associations captured from Medical Subject Heading (MeSH) terms linked to thousands of PubMed records, has identified differing patterns of associations between the four corpuses of publications (COVID-19, Coronavirus, SARS, or H5N1 influenza). Clustering of cytokine-disease co-occurrences in the context of Coronavirus has identified compelling clusters of co-morbidities and symptoms, some of which already known to be linked to COVID-19. Finally, network analysis identified sub-networks of cytokines and immune cell types associated with different manifestations, co-morbidities and symptoms of Coronavirus, SARS, and H5N1.ConclusionSystematic review of research in medicine is essential to facilitate evidence-based choices about health interventions. In a fast moving pandemic the approach taken here will identify trends and enable rapid comparison to the literature of related diseases.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.