• Headache · Jan 2013

    Two mechanisms involved in trigeminal CGRP release: implications for migraine treatment.

    • Paul L Durham and Caleb G Masterson.
    • Center for Biomedical & Life Sciences, Missouri State University, Springfield, MO, USA. pauldurham@missouristate.edu
    • Headache. 2013 Jan 1;53(1):67-80.

    Objective/BackgroundThe goal of this study was to better understand the cellular mechanisms involved in proton stimulation of calcitonin gene-related peptide (CGRP) secretion from cultured trigeminal neurons by investigating the effects of 2 antimigraine therapies, onabotulinumtoxinA and rizatriptan. Stimulated CGRP release from peripheral and central terminating processes of trigeminal ganglia neurons is implicated in migraine pathology by promoting inflammation and nociception. Based on models of migraine pathology, several inflammatory molecules including protons are thought to facilitate sensitization and activation of trigeminal nociceptive neurons and stimulate CGRP secretion. Despite the reported efficacy of triptans and onabotulinumtoxinA to treat acute and chronic migraine, respectively, a substantial number of migraineurs do not get adequate relief with these therapies. A possible explanation is that triptans and onabotulinumtoxinA are not able to block proton-mediated CGRP secretion.MethodsCGRP secretion from cultured primary trigeminal ganglia neurons was quantitated by radioimmunoassay while intracellular calcium and sodium levels were measured in neurons via live cell imaging using Fura-2 AM and SBFI AM, respectively. The expression of acid-sensing ion channel 3 (ASIC3) was determined by immunocytochemistry and Western blot analysis. In addition, the involvement of ASICs in mediating proton stimulation of CGRP was investigated using the potent and selective ASIC3 inhibitor APETx2.ResultsWhile KCl caused a significant increase in CGRP secretion that was significantly repressed by treatment with ethylene glycol tetraacetic acid (EGTA), onabotulinumtoxinA, and rizatriptan, the stimulatory effect of protons (pH 5.5) was not suppressed by EGTA, onabotulinumtoxinA, or rizatriptan. In addition, while KCl caused a transient increase in intracellular calcium levels that was blocked by EGTA, no appreciable change in calcium levels was observed with proton treatment. However, protons did significantly increase the intracellular level of sodium ions. Under our culture conditions, ASIC3 was shown to be expressed in most trigeminal ganglion neurons. Importantly, proton stimulation of CGRP secretion was repressed by pretreatment with the ASIC3 inhibitor APETx2, but not the transient receptor potential vanilloid-1 antagonist capsazepine.ConclusionsOur findings provide evidence that proton regulated release of CGRP from trigeminal neurons utilizes a different mechanism than the calcium and synaptosomal-associated protein 25-dependent pathways that are inhibited by the antimigraine therapies, rizatriptan and onabotulinumtoxinA.© 2012 American Headache Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.