-
- L J Magnotti, D Z Xu, Q Lu, and E A Deitch.
- Department of Surgery, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark 07103, USA.
- Arch Surg Chicago. 1999 Dec 1; 134 (12): 1333-40; discussion 1340-1.
BackgroundPreviously, we showed that mesenteric lymph generated following hemorrhagic shock increases endothelial cell permeability and contributes to lung injury. It has also been shown that lymph produced at the site of burn injury plays a role in altering pulmonary vascular hemodynamics. In addition, previous experimental work has suggested that organs and tissues distant from the injury site may contribute to pulmonary dysfunction. One explanation would be that gut-derived inflammatory factors (in addition to those produced locally at the site of injury) are reaching the pulmonary circulation, where they exert their effects via the gut lymphatics.HypothesesThe 2 hypotheses herein were that (1) gut-derived factors carried in the mesenteric lymph of rats generated following thermal injury will contribute to lung injury and (2) intestinal bacterial overgrowth will potentiate the degree of burn-induced lung injury. These hypotheses were tested by examining the effect of mesenteric lymph flow interruption prior to thermal injury on burn-induced lung injury in rats with a normal intestinal bacterial flora and in rats with intestinal Escherichia coli overgrowth. These rats were termed E. coli-monoassociated rats.MethodsNormal intestinal bacterial flora and monoassociated male Sprague-Dawley rats were subjected to sham burn, 40% total body surface area burn, or lymphatic division plus burn. After 3 hours, 10 mg of Evans blue was injected to measure lung permeability. After the rats were killed, a bronchoalveolar lavage was performed and the fluid analyzed spectrophotometrically. Bronchoalveolar lavage fluid protein content, pulmonary myeloperoxidase activity, and alveolar apoptosis served to further quantitate lung injury.ResultsBoth normal intestinal bacterial flora and monoassociated-burned rats exhibited significant increases in lung permeability, bronchoalveolar lavage fluid protein content, myeloperoxidase activity, and alveolar apoptosis. The combination of monoassociation and thermal injury resulted in even further increases in lung injury over thermal injury alone. Lymphatic division prior to thermal injury ameliorated burn-induced increases in lung permeability, bronchoalveolar lavage fluid protein content, pulmonary myeloperoxidase accumulation, and alveolar apoptosis in both normal intestinal bacterial flora and monoassociated rats.ConclusionsThe results of this study support the hypothesis that gut-derived factors carried in the mesenteric lymph contribute to burn-induced lung injury and may therefore play a role in postburn respiratory failure and suggest that intestinal bacterial overgrowth primes the host such that when animals are exposed to a second stimulus (such as thermal injury) an exaggerated response occurs.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.