-
- Chelsea Canan, Catherine Lesko, and Bryan Lau.
- From the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.
- Epidemiology. 2017 May 1; 28 (3): 396-398.
AbstractInstrumental variables (IV) are used to draw causal conclusions about the effect of exposure E on outcome Y in the presence of unmeasured confounders. IV assumptions have been well described: (1) IV affects E; (2) IV affects Y only through E; (3) IV shares no common cause with Y. Even when these assumptions are met, biased effect estimates can result if selection bias allows a noncausal path from E to Y. We demonstrate the presence of bias in IV analyses on a sample from a simulated dataset, where selection into the sample was a collider on a noncausal path from E to Y. By applying inverse probability of selection weights, we were able to eliminate the selection bias. IV approaches may protect against unmeasured confounding but are not immune from selection bias. Inverse probability of selection weights used with IV approaches can minimize bias.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.