• Eur. J. Appl. Physiol. · Mar 2005

    Aggravated hypoxia during breath-holds after prolonged exercise.

    • Peter Lindholm and Mikael Gennser.
    • Section of Environmental Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Berzelius väg 13, 17177 Stockholm, Sweden. peter.lindholm@fyfa.ki.se
    • Eur. J. Appl. Physiol. 2005 Mar 1; 93 (5-6): 701-7.

    AbstractHyperventilation prior to breath-hold diving increases the risk of syncope as a result of hypoxia. Recently, a number of cases of near-drownings in which the swimmers did not hyperventilate before breath-hold diving have come to our attention. These individuals had engaged in prolonged exercise prior to breath-hold diving and it is known that such exercise enhances lipid metabolism relative to carbohydrate metabolism, resulting in a lower production of CO(2) per amount of O(2 )consumed. Therefore, our hypothesis was that an exercise-induced increase in lipid metabolism and the associated reduction in the amount of CO(2) produced would cause the urge to breathe to develop at a lower P O(2), thereby increasing the risk of syncope due to hypoxia. Eight experienced breath-hold divers performed 5 or 6 breath-holds at rest in the supine position and then 5 or 6 additional breath-holds during intermittent light ergometer exercise with simultaneous apnoea (dynamic apnoea, DA) on two different days: control (C) and post prolonged sub-maximal exercise (PPE), when the breath-holds were performed 30 min after 2 h of sub-maximal exercise. After C and before the prolonged submaximal exercise subjects were put on a carbohydrate-free diet for 18 h to start the depletion of glycogen. The respiratory exchange ratio ( RER) and end-tidal P CO(2), P O(2), and SaO(2) values were determined and the data were presented as means (SD). The RER prior to breath-holding under control conditions was 0.83 (0.09), whereas the corresponding value after exercise was 0.70 (0.05) ( P <0.01). When the three apnoeas of the longest duration for each subject were analysed, the average duration of the dynamic apnoeas was 96 (14) s under control conditions and 96 (17) s following exercise. Both P O(2) and P CO(2) were higher during the control dynamic apnoeas than after PPE [PO(2) 6.9 (1.0) kPa vs 6.2 (1.2) kPa, P <0.01; P CO(2) 7.8 (0.5) kPa vs 6.7 (0.4) kPa, P <0.001; ANOVA testing]. A similar pattern was observed after breath-holding under resting conditions, i.e., a lower end-tidal P O(2) and P CO(2) after exercise (PPE) compared to control conditions. Our findings demonstrate that under the conditions of a relatively low RER following prolonged exercise, breath-holding is terminated at a lower P O(2) and a lower P CO(2) than under normal conditions. This suggests that elevated lipid metabolism may constitute a risk factor in connection with breath-holding during swimming and diving.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.