• Pflugers Arch. · Apr 2014

    Review

    Targeting of CaV3.2 T-type calcium channels in peripheral sensory neurons for the treatment of painful diabetic neuropathy.

    • Slobodan M Todorovic and Vesna Jevtovic-Todorovic.
    • Departments of Anesthesiology and Neuroscience, University of Virginia School of Medicine, Mail Box 800710, Charlottesville, VA, 22908-0710, USA, st9d@virginia.edu.
    • Pflugers Arch. 2014 Apr 1;466(4):701-6.

    AbstractPain-sensing sensory neurons (nociceptors) of the dorsal root ganglion (DRG) can become sensitized (hyperexcitable) in response to pathological conditions such as diabetes, which in turn may lead to the development of painful peripheral diabetic neuropathy (PDN). Because of insufficient knowledge about the mechanisms for this hypersensitization, current treatment for painful PDN has been limited to somewhat nonspecific systemic drugs having significant side effects or potential for abuse. Recent studies have established that the CaV3.2 isoform of T-channels makes a previously unrecognized contribution to sensitization of pain responses by enhancing excitability of nociceptors in animal models of type 1 and type 2 PDN. Furthermore, it has been reported that the glycosylation inhibitor neuraminidase can inhibit the native and recombinant CaV3.2 T-currents in vitro and completely reverse mechanical and thermal hyperalgesia in diabetic animals with PDN in vivo. Understanding details of posttranslational regulation of nociceptive channel activity via glycosylation may facilitate development of novel therapies for treatment of painful PDN. Pharmacological targeting the specific pathogenic mechanism rather than the channel per se may cause fewer side effects and reduce the potential for drug abuse in patients with diabetes.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.