• Shock · Mar 2022

    Hydroxyl Ethyl Starch (HES) preserves intrarenal microcirculatory perfusion shown by contrast-enhanced ultrasound (CEUS), and renal function in a severe hemodilution model in pigs.

    • Bülent Ergin, Tom van Rooij, Alexandre Lima, Yasin Ince, SpechtPatricia A CPACLaboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands., Egbert G Mik, Klazina Kooiman, Nico de Jong, and Can Ince.
    • Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
    • Shock. 2022 Mar 1; 57 (3): 457466457-466.

    AbstractAcute normovolemic hemodilution (ANH) is associated with low oxygen carrying capacity of blood and purposed to cause renal injury in perioperative setting. It is best accomplished in a perioperative setting by a colloid such as hydroxyl ethyl starch (HES) due its capacity to fill the vascular compartment and maintain colloidal pressure. However, alterations of intra renal microvascular perfusion, flow and its effects on renal function and damage during ANH has not been sufficiently clarified. Based on the extensive use of HES in the perioperative setting we tested the hypothesis that the use of HES during ANH is able to perfuse the kidney microcirculation adequately without causing renal dysfunction and injury in pigs. Hemodilution (n = 8) was performed by stepwise replacing blood with HES to hematocrit (Hct) levels of 20% (T1), 15% (T2), and 10% (T3). Seven control animals were investigated. Systemic and renal hemodynamics were monitored. Renal microcirculatory perfusion was visualized and quantified using contrast-enhanced ultrasound (CEUS) and laser speckle imaging (LSI). In addition, sublingual microcirculation was measured by handheld vital microscopy (HVM). Intrarenal mean transit time of ultrasound contrast agent (IRMTT-CEUS) was reduced in the renal cortex at Hct 10% in comparison to control at T3 (1.4 ± 0.6 vs. 2.2 ± 0.7 seconds, respectively, P < 0.05). Although renal function was preserved, the serum neutrophil gelatinase-associated lipocalin (NGAL) levels was higher at Hct 10% (0.033 ± 0.004 pg/μg protein) in comparison to control at T3 (0.021 ± 0.002 pg/μg protein. A mild correlation between CO and IRMTT (renal RBC velocity) (r -0.53; P = 0.001) and CO and NGAL levels (r 0.66; P = 0.001) was also found. Our results show that HES induced ANH is associated with a preserved intra renal blood volume, perfusion, and function in the clinical range of Hct (<15%). However, at severely low Hct (10%) ANH was associated with renal injury as indicated by increased NGAL levels. Changes in renal microcirculatory flow (CEUS and LSI) followed those seen in the sublingual microcirculation measured with HVM.Copyright © 2021 by the Shock Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.