• J Comput Assist Tomogr · Sep 2011

    New spatiotemporal features for improved discrimination of benign and malignant lesions in dynamic contrast-enhanced-magnetic resonance imaging of the breast.

    • Yaniv Gal, Andrew Mehnert, Andrew Bradley, Dominic Kennedy, and Stuart Crozier.
    • School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Queensland, Australia. ygal@itee.uq.edu.au
    • J Comput Assist Tomogr. 2011 Sep 1; 35 (5): 645-52.

    ObjectivesThe objective of this study was to measure the efficacy of 7 new spatiotemporal features for discriminating between benign and malignant lesions in dynamic contrast-enhanced-magnetic resonance imaging (MRI) of the breast.MethodsA total of 48 breast lesions from 39 patients were used: 25 malignant and 23 benign. Lesions were acquired using 1.5-T MRI machines in 3 different protocols. Two experiments were performed: (i) selection of the most discriminatory subset of features drawn from the new features and features from the literature and (ii) validation of classification performance of the selected subset of features.ResultsResults of the feature selection experiment show that the subset comprising 2 of the new features is the most useful for automatic classification of suspicious lesions in the breast: (i) gradient correlation of maximum intensity and (ii) mean wash-in rate. Results of the validation experiment show that using these 2 features, unseen data can be classified with an area under the receiver operating characteristic curve of 0.91 ± 0.06.ConclusionsResults of the experiments suggest that suspicious lesions in dynamic contrast-enhanced-MRI of the breast can be classified, with high accuracy, using only 2 of the proposed spatiotemporal features. The selected features indicate heterogeneity of enhancement and speed of enhancement in a tissue. High values of these indicators are likely to be correlated with malignancy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…