• Biochemical pharmacology · Feb 2012

    Comparative Study

    A-1048400 is a novel, orally active, state-dependent neuronal calcium channel blocker that produces dose-dependent antinociception without altering hemodynamic function in rats.

    • Victoria E Scott, Timothy A Vortherms, Wende Niforatos, Andrew M Swensen, Torben Neelands, Ivan Milicic, Patricia N Banfor, Andrew King, Chengmin Zhong, Gricelda Simler, Cenchen Zhan, Natalie Bratcher, Janel M Boyce-Rustay, Chang Z Zhu, Pramila Bhatia, George Doherty, Helmut Mack, Andrew O Stewart, and Michael F Jarvis.
    • Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA. Victoria.E.Scott@Abbott.com
    • Biochem. Pharmacol. 2012 Feb 1;83(3):406-18.

    AbstractBlockade of voltage-gated Ca²⁺ channels on sensory nerves attenuates neurotransmitter release and membrane hyperexcitability associated with chronic pain states. Identification of small molecule Ca²⁺ channel blockers that produce significant antinociception in the absence of deleterious hemodynamic effects has been challenging. In this report, two novel structurally related compounds, A-686085 and A-1048400, were identified that potently block N-type (IC₅₀=0.8 μM and 1.4 μM, respectively) and T-type (IC₅₀=4.6 μM and 1.2 μM, respectively) Ca²⁺ channels in FLIPR based Ca²⁺ flux assays. A-686085 also potently blocked L-type Ca²⁺ channels (EC₅₀=0.6 μM), however, A-1048400 was much less active in blocking this channel (EC₅₀=28 μM). Both compounds dose-dependently reversed tactile allodynia in a model of capsaicin-induced secondary hypersensitivity with similar potencies (EC₅₀=300-365 ng/ml). However, A-686085 produced dose-related decreases in mean arterial pressure at antinociceptive plasma concentrations in the rat, while A-1048400 did not significantly alter hemodynamic function at supra-efficacious plasma concentrations. Electrophysiological studies demonstrated that A-1048400 blocks native N- and T-type Ca²⁺ currents in rat dorsal root ganglion neurons (IC₅₀=3.0 μM and 1.6 μM, respectively) in a voltage-dependent fashion. In other experimental pain models, A-1048400 dose-dependently attenuated nociceptive, neuropathic and inflammatory pain at doses that did not alter psychomotor or hemodynamic function. The identification of A-1048400 provides further evidence that voltage-dependent inhibition of neuronal Ca²⁺ channels coupled with pharmacological selectivity vs. L-type Ca²⁺ channels can provide robust antinociception in the absence of deleterious effects on hemodynamic or psychomotor function.Copyright © 2011 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…