• Disabil Rehabil Assist Technol · Oct 2020

    Review

    A review of computer vision for semi-autonomous control of assistive robotic manipulators (ARMs).

    • Stefan Hein Bengtson, Thomas Bak, Lotte N S Andreasen Struijk, and Thomas Baltzer Moeslund.
    • Visual Analysis of People (VAP) Laboratory, Department of Architecture, Design, and Media Technology, Aalborg University, Aalborg, Denmark.
    • Disabil Rehabil Assist Technol. 2020 Oct 1; 15 (7): 731-745.

    AbstractPurpose: The advances in artificial intelligence have started to reach a level where autonomous systems are becoming increasingly popular as a way to aid people in their everyday life. Such intelligent systems may especially be beneficially for people struggling to complete common everyday tasks, such as individuals with movement-related disabilities. The focus of this paper is hence to review recent work in using computer vision for semi-autonomous control of assistive robotic manipulators (ARMs). Methods: Four databases were searched using a block search, yielding 257 papers which were reduced to 14 papers after applying various filtering criteria. Each paper was reviewed with focus on the hardware used, the autonomous behaviour achieved using computer vision and the scheme for semi-autonomous control of the system. Each of the reviewed systems were also sought characterized by grading their level of autonomy on a pre-defined scale.Conclusions: A re-occurring issue in the reviewed systems was the inability to handle arbitrary objects. This makes the systems unlikely to perform well outside a controlled environment, such as a lab. This issue could be addressed by having the systems recognize good grasping points or primitive shapes instead of specific pre-defined objects. Most of the reviewed systems did also use a rather simple strategy for the semi-autonomous control, where they switch either between full manual control or full automatic control. An alternative could be a control scheme relying on adaptive blending which could provide a more seamless experience for the user.Implications for rehabilitationAssistive robotic manipulators (ARMs) have the potential to empower individuals with disabilities by enabling them to complete common everyday tasks. This potential can be further enhanced by making the ARM semi-autonomous in order to actively aid the user.The scheme used for the semi-autonomous control of the ARM is crucial as it may be a hindrance if done incorrectly. Especially the ability to customize the semi-autonomous behaviour of the ARM is found to be important.Further research is needed to make the final move from the lab to the homes of the users. Most of the reviewed systems suffer from a rather fixed scheme for the semi-autonomous control and an inability to handle arbitrary objects.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.