• J. Comp. Neurol. · Nov 1984

    Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat.

    • F Cervero and L A Connell.
    • J. Comp. Neurol. 1984 Nov 20; 230 (1): 88-98.

    AbstractTransport of horseradish peroxidase (HRP) through somatic and visceral nerve fibres was used to study the patterns of termination of somatic and visceral primary afferent fibres within the lower thoracic segments of the cat's spinal cord. A concentrated solution of HRP was applied for at least 5 hours to the central end of the righ greater splanchnic nerve and of the left T9 intercostal nerve of adult cats. Some animals remained under chloralose anaesthesia for the duration of the HRP transport times (up to 53 hours) whereas longer HRP application and transport times (4-5 days) were allowed in animals that recovered from barbiturate anaesthesia. Somatic afferent fibres and varicosities (presumed terminals) were found in laminae I, II, III, IV, and V of the ipsilateral dorsal horn and in the ipsilateral Clarke's column. The density of the somatic projection was particularly high in the superficial dorsal horn. In parasagittal sections of the cord, bundles of somatic fibres were seen joining the dorsal horn from the dorsal roots via the dorsal columns and Lissauer's tract. A medio-lateral somatotopic arrangement of somatic afferent terminations was observed, with afferent fibres from the ventral parts of the dermatome ending in the medial dorsal horn and afferent fibres from the dorsal parts of the dermatome ending in the lateral dorsal horn. The total rostro-caudal extent of the somatic projection through a single spinal nerve was found to be of 2 and 2/3 segments, including the segment of entry, the entire segment rostral to it and two-thirds of the segment caudal to it. A lateral to medial shift in the position of the somatic projection was observed in the rostro-caudal axis of the cord. Visceral afferent fibres and varicosities (presumed terminals) were seen in laminae I and V of the ipsilateral dorsal horn. The density of the visceral projection to the dorsal horn was substantially lower than that of the somatic projection. Visceral afferent fibres reached the dorsal horn via Lissauer's tract and joined a lateral bundle of fine fibres that run along the lateral edge of the dorsal horn. The substantia gelatinosa (lamina II) appeared free of visceral afferent fibres. These results are discussed in relation to the mechanisms of viscero-somatic convergence onto sensory pathways in the thoracic spinal cord.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.