-
- Jocemar Ilha, Anamaria Meireles, Gabriel Ribeiro de Freitas, do Espírito SantoCaroline CCCNúcleo de Pesquisa em Lesão Medular (NuLeMe), Departamento de Fisioterapia, CEFID, UDESC, SC, Brazil., Nicolas A M M Machado-Pereira, Alessandra Swarowsky, and SantosAdair Roberto SoaresARSLaboratório de Neurobiologia da Dor e da Inflamação (LANDI), Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil..
- Programa de Pós-graduação em Fisioterapia, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Florianópolis, SC, Brazil; Núcleo de Pesquisa em Lesão Medular (NuLeMe), Departamento de Fisioterapia, CEFID, UDESC, SC, Brazil. Electronic address: jocemar.ilha@udesc.br.
- Life Sci. 2019 Sep 1; 232: 116627.
AimEvidence suggests that task-specific gait training improves locomotor impairments in people with incomplete spinal cord injury (SCI); however, plastic changes in brain areas remain poorly understood. The aim of this study was to examine the possible effects of a task-specific overground gait training on locomotor recovery and neuroplasticity markers in the cortex, cerebellum, and lumbar spinal cord in an experimental model of incomplete-SCI.Main MethodsUsing a blind, basic experimental design, 24 adult Wistar rats underwent a surgical procedure and were allocated into sham, non-trained SCI (SCI), and trained SCI (Tr-SCI) groups. On postoperative day 14, trained animals started a 4-week overground gait training program. All groups were subjected to weekly assessment of locomotor recovery of the hind limbs. On postoperative day 40, brain and lumbar spinal cord structures were dissected and processed for biochemical analysis of the synaptophysin, microtubule-associated protein 2 (MAP-2), and brain-derived neurotrophic factor (BDNF).Key FindingsTr-SCI group showed greater locomotor function recovery compared with non-trained SCI from the postoperative day 21 (p < 0.05). The training was able to improve the neuroplasticity markers synaptophysin, MAP-2, and BDNF expressions in motor cortex (p < 0.05), but not in the cerebellum and in the spinal cord for trained SCI group compared to non-trained.SignificanceTask-specific overground gait training improves locomotor recovery in a rat model of incomplete thoracic-SCI. Furthermore, training promotes motor cortex plasticity, evidenced for increasing expression of the neuroplasticity markers that may support the functional recovery.Copyright © 2019 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.