• Brain · Dec 2008

    Mapping local hippocampal changes in Alzheimer's disease and normal ageing with MRI at 3 Tesla.

    • Giovanni B Frisoni, Rossana Ganzola, Elisa Canu, Udo Rüb, Francesca B Pizzini, Franco Alessandrini, Giada Zoccatelli, Alberto Beltramello, Carlo Caltagirone, and Paul M Thompson.
    • Laboratory of Epidemiology Neuroimaging & Telemedicine, IRCCS Centro San Giovanni di Dio FBF, The National Centre for Research and Care of Alzheimer's and Mental Diseases, Brescia, Italy. gfrisoni@fatebenefratelli.it
    • Brain. 2008 Dec 1; 131 (Pt 12): 3266-76.

    AbstractHistological studies have suggested differing involvement of the hippocampal subfields in ageing and in Alzheimer's disease. The aim of this study was to assess in vivo local hippocampal changes in ageing and Alzheimer's disease based on high resolution MRI at 3 Tesla. T(1)-weighted images were acquired from 19 Alzheimer's disease patients [age 76 +/- 6 years, three males, Mini-Mental State Examination 13 +/- 4] and 19 controls (age 74 +/- 5 years, 11 males, Mini-Mental State Examination 29 +/- 1). The hippocampal formation was isolated by manual tracing. Radial atrophy mapping was used to assess group differences and correlations by averaging hippocampal shapes across subjects using 3D parametric surface mesh models. Percentage difference, Pearson's r, and significance maps were produced. Hippocampal volumes were inversely correlated with age in older healthy controls (r = 0.56 and 0.6 to the right and left, respectively, P < 0.05, corresponding to 14% lower volume for every 10 years of older age from ages 65 to 85 years). Ageing-associated atrophy mapped to medial and lateral areas of the tail and body corresponding to the CA1 subfield and ventral areas of the head corresponding to the presubiculum. Significantly increased volume with older age mapped to a few small spots mainly located to the CA1 sector of the right hippocampus. Volumes were 35% and 30% smaller in Alzheimer's disease patients to the right and left (P < 0.0005). Alzheimer's disease-associated atrophy mapped not only to CA1 areas of the body and tail corresponding to those also associated with age, but also to dorsal CA1 areas of the head unaffected by age. Regions corresponding to the CA2-3 fields were relatively spared in both ageing and Alzheimer's disease. Hippocampal atrophy in Alzheimer's disease maps to areas in the body and tail that partly overlap those affected by normal ageing. Specific areas in the anterior and dorsal CA1 subfield involved in Alzheimer's disease were not in normal ageing. These patterns might relate to differential neural systems involved in Alzheimer's disease and ageing.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,704,841 articles already indexed!

We guarantee your privacy. Your email address will not be shared.