• J. Med. Internet Res. · Feb 2021

    Using Tweets to Understand How COVID-19-Related Health Beliefs Are Affected in the Age of Social Media: Twitter Data Analysis Study.

    • Hanyin Wang, Yikuan Li, Meghan Hutch, Andrew Naidech, and Yuan Luo.
    • Department of Preventive Medicine, Northwestern University, Chicago, IL, United States.
    • J. Med. Internet Res. 2021 Feb 22; 23 (2): e26302.

    BackgroundThe emergence of SARS-CoV-2 (ie, COVID-19) has given rise to a global pandemic affecting 215 countries and over 40 million people as of October 2020. Meanwhile, we are also experiencing an infodemic induced by the overabundance of information, some accurate and some inaccurate, spreading rapidly across social media platforms. Social media has arguably shifted the information acquisition and dissemination of a considerably large population of internet users toward higher interactivities.ObjectiveThis study aimed to investigate COVID-19-related health beliefs on one of the mainstream social media platforms, Twitter, as well as potential impacting factors associated with fluctuations in health beliefs on social media.MethodsWe used COVID-19-related posts from the mainstream social media platform Twitter to monitor health beliefs. A total of 92,687,660 tweets corresponding to 8,967,986 unique users from January 6 to June 21, 2020, were retrieved. To quantify health beliefs, we employed the health belief model (HBM) with four core constructs: perceived susceptibility, perceived severity, perceived benefits, and perceived barriers. We utilized natural language processing and machine learning techniques to automate the process of judging the conformity of each tweet with each of the four HBM constructs. A total of 5000 tweets were manually annotated for training the machine learning architectures.ResultsThe machine learning classifiers yielded areas under the receiver operating characteristic curves over 0.86 for the classification of all four HBM constructs. Our analyses revealed a basic reproduction number R0 of 7.62 for trends in the number of Twitter users posting health belief-related content over the study period. The fluctuations in the number of health belief-related tweets could reflect dynamics in case and death statistics, systematic interventions, and public events. Specifically, we observed that scientific events, such as scientific publications, and nonscientific events, such as politicians' speeches, were comparable in their ability to influence health belief trends on social media through a Kruskal-Wallis test (P=.78 and P=.92 for perceived benefits and perceived barriers, respectively).ConclusionsAs an analogy of the classic epidemiology model where an infection is considered to be spreading in a population with an R0 greater than 1, we found that the number of users tweeting about COVID-19 health beliefs was amplifying in an epidemic manner and could partially intensify the infodemic. It is "unhealthy" that both scientific and nonscientific events constitute no disparity in impacting the health belief trends on Twitter, since nonscientific events, such as politicians' speeches, might not be endorsed by substantial evidence and could sometimes be misleading.©Hanyin Wang, Yikuan Li, Meghan Hutch, Andrew Naidech, Yuan Luo. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.02.2021.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.