• J Trauma Acute Care Surg · Aug 2012

    Multicenter Study Comparative Study

    Debunking the survival bias myth: characterization of mortality during the initial 24 hours for patients requiring massive transfusion.

    • Joshua B Brown, Mitchell J Cohen, Joseph P Minei, Ronald V Maier, Micheal A West, Timothy R Billiar, Andrew B Peitzman, Ernest E Moore, Joseph Cushieri, Jason L Sperry, and Inflammation and Host Response to Injury Investigators.
    • Division of General Surgery and Trauma, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA.
    • J Trauma Acute Care Surg. 2012 Aug 1;73(2):358-64; discussion 364.

    BackgroundControversy surrounds the optimal ratios of blood (packed red blood cell [PRBC]), plasma (fresh frozen plasma [FFP]) and platelet (PLT) use for patients requiring massive transfusion (MT) owing to possible survival bias in previous studies. We sought to characterize mortality during the first 24 hours while controlling for time varying effects of transfusion to minimize survival bias.MethodsData were obtained from a multicenter prospective cohort study of adults with blunt injury and hemorrhagic shock. MT was defined as 10 U of PRBC or more over 24 hours. High FFP/PRBC (≥1:1.5) and PLT/PRBC (≥1:9) ratios at 6, 12, and 24 hours were compared with low ratio groups. Cox proportional hazards regression was used to determine the independent association of high versus low ratios with mortality at 6, 12, and 24 hours while controlling for important confounders. Cox proportional hazards regression was repeated with FFP/PRBC and PLT/PRBC ratios analyzed as time-dependent covariates to account for fluctuation over time. Mortality for more than 24 hours was treated as survival.ResultsIn the MT cohort (n = 604), initial base deficit, lactate, and international normalized ratio were similar across high and low ratio groups. High 6-hour FFP/PRBC and PLT/PRBC ratios were independently associated with a reduction in mortality risk at 6, 12, and 24 hours (hazard ratio [HR] range, 0.20-0.41, p < 0.05). These findings were consistent for 12-hour and 24-hour ratios. When analyzed as time-dependent covariates, a high FFP/PRBC ratio was associated with a 68% (HR, 0.32; 95% confidence interval [CI], 0.12-0.87, p = 0.03) reduction in 24-hour mortality, and a high PLT/PRBC ratio was associated with a 96% (HR, 0.04; 95% CI, 0.01-0.94, p = 0.04) reduction in 24-hour mortality. Subgroup analysis revealed that a high 1:1 ratio (≥1:1.5) had a significant 24-hour survival benefit relative to a high 1:2 (1:1.51-1:2.50) ratio group at both 6 hours (HR, 0.19; 95% CI, 0.03-0.86, p = 0.03) and 24 hours (HR, 0.25; 95% CI, 0.06-0.95, p = 0.04), suggesting a dose-response relationship. A high FFP/PRBC or PLT/PRBC ratio was not associated with development of multiple-organ failure, nosocomial infection, or adult respiratory distress syndrome in a 28-day Cox proportional hazards regression.ConclusionDespite similar degrees of early shock and coagulopathy, high FFP/PRBC and PLT/PRBC ratios are associated with a survival benefit as early as 6 hours and throughout the first 24 hours, even when time-dependent fluctuations of component transfusion are accounted for. This suggests that the observed mortality benefit associated with high component transfusion ratios is unlikely owing to survivor bias and that early attainment of high transfusion ratios may significantly lower the risk of mortality in MT patients.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.