• Circ Arrhythm Electrophysiol · Dec 2020

    Artificial Intelligence-Electrocardiography to Predict Incident Atrial Fibrillation: A Population-Based Study.

    • Georgios Christopoulos, Jonathan Graff-Radford, Camden L Lopez, Xiaoxi Yao, Zachi I Attia, Alejandro A Rabinstein, Ronald C Petersen, David S Knopman, Michelle M Mielke, Walter Kremers, Prashanthi Vemuri, Konstantinos C Siontis, Paul A Friedman, and Peter A Noseworthy.
    • Department of Cardiovascular Medicine (G.C., X.Y., Z.I.A., K.C.S., P.A.F., P.A.N.), Mayo Clinic, Rochester, MN.
    • Circ Arrhythm Electrophysiol. 2020 Dec 1; 13 (12): e009355.

    BackgroundAn artificial intelligence (AI) algorithm applied to electrocardiography during sinus rhythm has recently been shown to detect concurrent episodic atrial fibrillation (AF). We sought to characterize the value of AI-enabled electrocardiography (AI-ECG) as a predictor of future AF and assess its performance compared with the CHARGE-AF score (Cohorts for Aging and Research in Genomic Epidemiology-AF) in a population-based sample.MethodsWe calculated the probability of AF using AI-ECG, among participants in the population-based Mayo Clinic Study of Aging who had no history of AF at the time of the baseline study visit. Cox proportional hazards models were fit to assess the independent prognostic value and interaction between AI-ECG AF model output and CHARGE-AF score. C statistics were calculated for AI-ECG AF model output, CHARGE-AF score, and combined AI-ECG and CHARGE-AF score.ResultsA total of 1936 participants with median age 75.8 (interquartile range, 70.4-81.8) years and median CHARGE-AF score 14.0 (IQR, 13.2-14.7) were included in the analysis. Participants with AI-ECG AF model output of >0.5 at the baseline visit had cumulative incidence of AF 21.5% at 2 years and 52.2% at 10 years. When included in the same model, both AI-ECG AF model output (hazard ratio, 1.76 per SD after logit transformation [95% CI, 1.51-2.04]) and CHARGE-AF score (hazard ratio, 1.90 per SD [95% CI, 1.58-2.28]) independently predicted future AF without significant interaction (P=0.54). C statistics were 0.69 (95% CI, 0.66-0.72) for AI-ECG AF model output, 0.69 (95% CI, 0.66-0.71) for CHARGE-AF, and 0.72 (95% CI, 0.69-0.75) for combined AI-ECG and CHARGE-AF score.ConclusionsIn the present study, both the AI-ECG AF model output and CHARGE-AF score independently predicted incident AF. The AI-ECG may offer a means to assess risk with a single test and without requiring manual or automated clinical data abstraction.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.