• J. Thorac. Cardiovasc. Surg. · Apr 2023

    Prediction of operative mortality for patients undergoing cardiac surgical procedures without established risk scores.

    • Chin Siang Ong, Erik Reinertsen, Haoqi Sun, Philicia Moonsamy, Navyatha Mohan, Masaki Funamoto, Tsuyoshi Kaneko, Prem S Shekar, Stefano Schena, Jennifer S Lawton, David A D'Alessandro, M Brandon Westover, Aaron D Aguirre, and Thoralf M Sundt.
    • Division of Cardiac Surgery, Massachusetts General Hospital and Corrigan Minehan Heart Center, Boston, Mass.
    • J. Thorac. Cardiovasc. Surg. 2023 Apr 1; 165 (4): 14491459.e151449-1459.e15.

    ObjectiveCurrent cardiac surgery risk models do not address a substantial fraction of procedures. We sought to create models to predict the risk of operative mortality for an expanded set of cases.MethodsFour supervised machine learning models were trained using preoperative variables present in the Society of Thoracic Surgeons (STS) data set of the Massachusetts General Hospital to predict and classify operative mortality in procedures without STS risk scores. A total of 424 (5.5%) mortality events occurred out of 7745 cases. Models included logistic regression with elastic net regularization (LogReg), support vector machine, random forest (RF), and extreme gradient boosted trees (XGBoost). Model discrimination was assessed via area under the receiver operating characteristic curve (AUC), and calibration was assessed via calibration slope and expected-to-observed event ratio. External validation was performed using STS data sets from Brigham and Women's Hospital (BWH) and the Johns Hopkins Hospital (JHH).ResultsModels performed comparably with the highest mean AUC of 0.83 (RF) and expected-to-observed event ratio of 1.00. On external validation, the AUC was 0.81 in BWH (RF) and 0.79 in JHH (LogReg/RF). Models trained and applied on the same institution's data achieved AUCs of 0.81 (BWH: LogReg/RF/XGBoost) and 0.82 (JHH: LogReg/RF/XGBoost).ConclusionsMachine learning models trained on preoperative patient data can predict operative mortality at a high level of accuracy for cardiac surgical procedures without established risk scores. Such procedures comprise 23% of all cardiac surgical procedures nationwide. This work also highlights the value of using local institutional data to train new prediction models that account for institution-specific practices.Copyright © 2021 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.