• Magn Reson Med · Aug 2010

    Reducing distortions in diffusion-weighted echo planar imaging with a dual-echo blip-reversed sequence.

    • Daniel Gallichan, Jesper L R Andersson, Mark Jenkinson, Matthew D Robson, and Karla L Miller.
    • Centre for Functional Magnetic Resonance Imaging of the Brain, John Radcliffe Hospital, University of Oxford, Oxford, UK. daniel.gallichan@uniklinik-freiburg.de
    • Magn Reson Med. 2010 Aug 1; 64 (2): 382-90.

    AbstractThe inherent distortions in echo-planar imaging that arise due to inhomogeneities in the static magnetic field can lead to difficulties when attempting to obtain structurally accurate diffusion-tensor imaging data. Parallel acceleration techniques can reduce the magnitude of these distortions but do not remove them entirely. Images can be corrected using a measured field map, but this is prone to error. One approach to correcting for these distortions, referred to here as "blip-reversed" echo-planar imaging, involves collecting a second set of images with the phase encoding reversed. Here, a novel approach to collecting blip-reversed echo-planar imaging data for diffusion-tensor imaging is presented: a dual-echo sequence is used in which the phase-encoding direction of the second echo is swapped compared to the first echo. This allows benefits of the blip-reversed approach to be exploited, with only a modest increase in scan time and, due to the extra data acquired, no significant loss of signal-to-noise efficiency. A novel approach to recombining blip-reversed data is also presented, which involves refining the measured field map, using an algorithm to minimize the difference between the corrected images. The field map refinement is also applicable to conventionally acquired blip-reversed sequences.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.