• J Breath Res · Mar 2010

    Measurements of lactate in exhaled breath condensate at rest and after maximal exercise in young and healthy subjects.

    • E M Marek, J Volke, I Hawener, P Platen, K Mückenhoff, and W Marek.
    • Institute of Sports Medicine and Sports Nutrition, Ruhr-University Bochum, Overbergstr. 19, D-44780 Bochum, Germany. Eike.Marek@ruhr-uni-bochum.de
    • J Breath Res. 2010 Mar 1; 4 (1): 017105.

    AbstractArterial lactate concentrations, taken as indicators of physical fitness, in athletes as well as in patients with cardio-respiratory or metabolic diseases, are measured invasively from arterialized ear lobe blood. Currently developed micro enzyme detectors permit a non-invasive measurement of hypoxia-related metabolites such as lactate in exhaled breath condensate (EBC). The aim of our study is to prove whether this technology will replace the traditional measurement of lactate in arterialized blood. Therefore, we determined the functional relation between lactate release in EBC and lactate concentration in blood in young and healthy subjects at rest and after exhausting bicycle exercise. During resting conditions as well as after exhausting bicycle exercise, 100 L of exhaled air along with blood samples from the ear lobe was collected after stationary load conditions in 16 healthy subjects. EBC was obtained by cooling the expired air volume with an ECoScreen I (FILT GmbH, Berlin) condenser. The analysis was performed within 90 min using an ECoCheck ampere meter (FILT GmbH, Berlin). Lactate measurements were performed using a bi-enzyme sensor after lactate oxidase-induced oxidation of lactate to pyruvate and H2O2. The rates of lactate release via the exhaled air were calculated from the lactate concentration, the volume and the collection time of the EBC. The functional relation of lactate release in exhaled air and lactate concentration of arterial blood was computed. At rest, the mean lactate concentration in arterialized blood was 0.93 ± 0.30 mmol L(-1). At a resting ventilation of 11.5 ± 3.4 L min(-1), the collection time for 100 L of exhaled air, Ts, was 8.4 ± 2.9 min, and 1.68 ± 0.40 mL EBC was obtained. In EBC, the lactate concentration was 21.4 ± 7.7 µmol L(-1), and the rate of lactate release rate in collected EBC was 4.5 ± 1.7 nmol min(-1). After maximal exercise load (220 ± 20 W), the blood lactate concentration increased to 10.9 ± 1.8 mmol L(-1) and the ventilation increased to 111.6 ± 21.4 L min(-1). The EBC collection time decreased to 3.9 ± 1.9 min, and 1.20 ± 0.44 mL EBC were obtained in the recovery period after termination of exercise. The lactate concentration in EBC increased to 40.3 ± 23.0 µmol L(-1), and the lactate release in EBC increased to 13.6 ± 8.6 nmol min(-1) (p < 0.01). Assuming a volume of 4.3 mL water in 100 L of exhaled air (saturated with water at 37 °C), we calculated a lactate release at rest of 11.5 ± 4.3 nmol min(-1) and 48.6 ± 30.7 nmol min(-1) (p < 0.01) after exhausting exercise. Detectable releases of lactate in exhaled breath condensate were found already under resting conditions. During exhausting external load on a bicycle spiroergometer, an increase in the lactate concentration was found in arterialized blood along with an increased lactate release in EBC. The correlation between expiratory lactate release via EBC and lactate concentration in arterialized blood is studied in pursuing investigations.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.