• J Neurosurg Spine · Jan 2005

    Comparative Study

    Biomechanical comparison: stability of lateral-approach anterior lumbar interbody fusion and lateral fixation compared with anterior-approach anterior lumbar interbody fusion and posterior fixation in the lower lumbar spine.

    • Sung-Min Kim, T Jesse Lim, Josemaria Paterno, Jon Park, and Daniel H Kim.
    • Department of Neurosurgery, Stanford University Medical Center, Stanford, California 94305-5327, USA.
    • J Neurosurg Spine. 2005 Jan 1; 2 (1): 62-8.

    ObjectThe stability of lateral lumbar interbody graft-augmented fusion and supplementary lateral plate fixation in human cadavers has not been determined. The purpose of this study was to investigate the immediate biomechanical stabilities of the following: 1) femoral ring allograft (FRA)-augmented anterior lumbar interbody fusion (ALIF) after left lateral discectomy combined with additional lateral MACS HMA plate and screw fixation; and 2) ALIF combined with posterior transpedicular fixation after anterior discectomy.MethodsSixteen human lumbosacral spines were loaded with six modes of motion. The intervertebral motion was measured using a video-based motion-capturing system. The range of motion (ROM) and the neutral zone (NZ) in each loading mode were compared with a maximum of 7.5 Nm. The ROM values for both stand-alone ALIF approaches were similar to those of the intact spine, whereas NZ measurements were higher in most loading modes. No significant intergroup differences were found. The ROM and NZ values for lateral fixation in all modes were significantly lower than those of intact spine, except when NZ was measured in lateral bending. All ROM and NZ values for transpedicular fixation were significantly lower than those for stand-alone anterior ALIF. Transpedicular fixation conferred better stabilization than lateral fixation in flexion, extension, and lateral bending modes.ConclusionsNeither approach to stand-alone FRA-augmented ALIF provided sufficient stabilization, but supplementary instrumentation conferred significant stabilization. The MACS HMA plate and screw fixation system, although inferior to posterior transpedicular fixation, provided adequate stability compared with the intact spine and can serve as a sound alternative to supplementary spinal stabilization.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.