• Plos One · Jan 2021

    Characterizing COVID-19 clinical phenotypes and associated comorbidities and complication profiles.

    • Elizabeth R Lusczek, Nicholas E Ingraham, Basil S Karam, Jennifer Proper, Lianne Siegel, Erika S Helgeson, Sahar Lotfi-Emran, Emily J Zolfaghari, Emma Jones, Michael G Usher, Jeffrey G Chipman, R Adams Dudley, Bradley Benson, Genevieve B Melton, Anthony Charles, Monica I Lupei, and Christopher J Tignanelli.
    • Department of Surgery, University of Minnesota, Minneapolis, MN, United States of America.
    • Plos One. 2021 Jan 1; 16 (3): e0248956.

    PurposeHeterogeneity has been observed in outcomes of hospitalized patients with coronavirus disease 2019 (COVID-19). Identification of clinical phenotypes may facilitate tailored therapy and improve outcomes. The purpose of this study is to identify specific clinical phenotypes across COVID-19 patients and compare admission characteristics and outcomes.MethodsThis is a retrospective analysis of COVID-19 patients from March 7, 2020 to August 25, 2020 at 14 U.S. hospitals. Ensemble clustering was performed on 33 variables collected within 72 hours of admission. Principal component analysis was performed to visualize variable contributions to clustering. Multinomial regression models were fit to compare patient comorbidities across phenotypes. Multivariable models were fit to estimate associations between phenotype and in-hospital complications and clinical outcomes.ResultsThe database included 1,022 hospitalized patients with COVID-19. Three clinical phenotypes were identified (I, II, III), with 236 [23.1%] patients in phenotype I, 613 [60%] patients in phenotype II, and 173 [16.9%] patients in phenotype III. Patients with respiratory comorbidities were most commonly phenotype III (p = 0.002), while patients with hematologic, renal, and cardiac (all p<0.001) comorbidities were most commonly phenotype I. Adjusted odds of respiratory, renal, hepatic, metabolic (all p<0.001), and hematological (p = 0.02) complications were highest for phenotype I. Phenotypes I and II were associated with 7.30-fold (HR:7.30, 95% CI:(3.11-17.17), p<0.001) and 2.57-fold (HR:2.57, 95% CI:(1.10-6.00), p = 0.03) increases in hazard of death relative to phenotype III.ConclusionWe identified three clinical COVID-19 phenotypes, reflecting patient populations with different comorbidities, complications, and clinical outcomes. Future research is needed to determine the utility of these phenotypes in clinical practice and trial design.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.