• JSES international · Jul 2021

    Using machine learning methods to predict nonhome discharge after elective total shoulder arthroplasty.

    • Cesar D Lopez, Michael Constant, Matthew J J Anderson, Jamie E Confino, John T Heffernan, and Charles M Jobin.
    • New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA.
    • JSES Int. 2021 Jul 1; 5 (4): 692-698.

    BackgroundMachine learning has shown potential in accurately predicting outcomes after orthopedic surgery, thereby allowing for improved patient selection, risk stratification, and preoperative planning. This study sought to develop machine learning models to predict nonhome discharge after total shoulder arthroplasty (TSA).MethodsThe American College of Surgeons National Surgical Quality Improvement Program database was queried for patients who underwent elective TSA from 2012 to 2018. Boosted decision tree and artificial neural networks (ANN) machine learning models were developed to predict non-home discharge and 30-day postoperative complications. Model performance was measured using the area under the receiver operating characteristic curve (AUC) and overall accuracy (%). Multivariate binary logistic regression analyses were used to identify variables that were significantly associated with the predicted outcomes.ResultsThere were 21,544 elective TSA cases identified in the National Surgical Quality Improvement Program registry from 2012 to 2018 that met inclusion criteria. Multivariate logistic regression identified several variables associated with increased risk of nonhome discharge including female sex (odds ratio [OR] = 2.83; 95% confidence interval [CI] = 2.53-3.17; P < .001), age older than 70 years (OR = 3.19; 95% CI = 2.86-3.57; P < .001), American Society of Anesthesiologists classification 3 or greater (OR = 2.70; 95% CI = 2.41-2.03; P < .001), prolonged operative time (OR = 1.38; 95% CI = 1.20-1.58; P < .001), as well as history of diabetes (OR = 1.56; 95% CI = 1.38-1.75; P < .001), chronic obstructive pulmonary disease (OR = 1.71; 95% CI = 1.46-2.01; P < .001), congestive heart failure (OR = 2.65; 95% CI = 1.72-4.01; P < .001), hypertension (OR = 1.35; 95% CI = 1.20-1.52; P = .004), dialysis (OR = 3.58; 95% CI = 2.01-6.39; P = .002), wound infection (OR = 5.67; 95% CI = 3.46-9.29; P < .001), steroid use (OR = 1.43; 95% CI = 1.18-1.74; P = .010), and bleeding disorder (OR = 1.84; 95% CI = 1.45-2.34; P < .001). The boosted decision tree model for predicting nonhome discharge had an AUC of 0.788 and an overall accuracy of 90.3%. The ANN model for predicting nonhome discharge had an AUC of 0.851 and an overall accuracy of 89.9%. For predicting the occurrence of 1 or more postoperative complications, the boosted decision tree model had an AUC of 0.795 and an overall accuracy of 95.5%. The ANN model yielded an AUC of 0.788 and an overall accuracy of 92.5%.ConclusionsBoth the boosted decision tree and ANN models performed well in predicting nonhome discharge with similar overall accuracy, but the ANN had higher discriminative ability. Based on the findings of this study, machine learning has the potential to accurately predict nonhome discharge after elective TSA. Surgeons can use such tools to guide patient expectations and to improve preoperative discharge planning, with the ultimate goal of decreasing hospital length of stay and improving cost-efficiency.© 2021 The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.