• Anesthesiology · Feb 2014

    Characterization of Acute and Chronic Neuropathies Induced by Oxaliplatin in Mice and Differential Effects of a Novel Mitochondria-targeted Antioxidant on the Neuropathies.

    • Satoshi Toyama, Naohito Shimoyama, Yasuo Ishida, Takayoshi Koyasu, Hazel H Szeto, and Megumi Shimoyama.
    • From the Department of Anesthesiology (S.T., N.S., M.S.) and Department of Pathology (Y.I., T.K.), Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan; Division of Palliative Medicine, Department of Anesthesiology (N.S.), Jikei Medical University Hospital, Tokyo, Japan; and Department of Pharmacology (H.H.S.), Weill Cornell Medical College, New York, New York.
    • Anesthesiology. 2014 Feb 1;120(2):459-73.

    BackgroundOxaliplatin, a chemotherapeutic agent used for the treatment of colorectal cancer, induces dose-limiting neuropathy that compromises quality of life. This study aimed to reproduce, in mice, patients' symptoms of oxaliplatin-induced neuropathy and to observe effects of SS-31, a mitochondria-targeted antioxidant on the neuropathy.MethodsNeuropathy was induced by single or repeated injections of oxaliplatin. Cold and mechanical hypersensitivities were assessed by 15°C-cold plate, temperature preference, and von Frey tests. Morphology of peripheral nerves and dorsal root ganglions, expression of spinal cord c-Fos, density of intraepidermal nerve fibers, and levels of dorsal root ganglion-reactive oxygen/nitrogen species were examined. SS-31 was administered concomitantly or after oxaliplatin injections.ResultsSingle injection of oxaliplatin induced cold hypersensitivity in forepaws but not in hind paws which resolved within days (maximal forepaw shakes: 28 ± 1.5 vs. 9.3 ± 1.6/150 s, mean ± SEM, P < 0.001, n = 6 per group). Oxaliplatin-administered mice disfavored 10° and 15°C plates more than control. Paw stimulation at 15°C induced c-Fos-positive cells within superficial laminae of the dorsal horn in C7-T1 segments. Weekly administrations induced gradual development of persistent mechanical allodynia in the hind paws (minimal mechanical threshold: 0.19 ± 0.08 vs. 0.93 ± 0.11 g, P < 0.001, n = 10 per group). Microscopy revealed no overt morphological changes in peripheral nerves and dorsal root ganglions. Concomitant SS-31 administration with repeated oxaliplatin administration attenuated both cold and mechanical hypersensitivity. Decrease in intraepidermal nerve fibers and increase in dorsal root ganglion-reactive oxygen/nitrogen species were also attenuated. Acute SS-31 administration after symptoms were established reversed only cold hypersensitivity.ConclusionThis model of oxaliplatin-induced neuropathy mimicked patients' conditions. SS-31 has potentials to prevent both acute and chronic neuropathies but is only helpful in treatment of acute neuropathy. (Anesthesiology 2014; 120:459-73).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.