• Plos One · Jan 2017

    Impact of a district-wide health center strengthening intervention on healthcare utilization in rural Rwanda: Use of interrupted time series analysis.

    • Hari S Iyer, Lisa R Hirschhorn, Marie Paul Nisingizwe, Emmanuel Kamanzi, Peter C Drobac, Felix C Rwabukwisi, Michael R Law, Andrew Muhire, Vincent Rusanganwa, and Paulin Basinga.
    • Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, United States of America.
    • Plos One. 2017 Jan 1; 12 (8): e0182418.

    BackgroundEvaluations of health systems strengthening (HSS) interventions using observational data are rarely used for causal inference due to limited data availability. Routinely collected national data allow use of quasi-experimental designs such as interrupted time series (ITS). Rwanda has invested in a robust electronic health management information system (HMIS) that captures monthly healthcare utilization data. We used ITS to evaluate impact of an HSS intervention to improve primary health care facility readiness on health service utilization in two rural districts of Rwanda.MethodsWe used controlled ITS analysis to compare changes in healthcare utilization at health centers (HC) that received the intervention (n = 13) to propensity score matched non-intervention health centers in Rwanda (n = 86) from January 2008 to December 2012. HC support included infrastructure renovation, salary support, medical equipment, referral network strengthening, and clinical training. Baseline quarterly mean outpatient visit rates and population density were used to model propensity scores. The intervention began in May 2010 and was implemented over a twelve-month period. We used monthly healthcare utilization data from the national Rwandan HMIS to study changes in the (1) number of facility deliveries per 10,000 women, (2) number of referrals for high risk pregnancy per 100,000 women, and (3) the number of outpatient visits performed per 1,000 catchment population.ResultsPHIT HC experienced significantly higher monthly delivery rates post-HSS during the April-June season than comparison (3.19/10,000, 95% CI: [0.27, 6.10]). In 2010, this represented a 13% relative increase, and in 2011, this represented a 23% relative increase. The post-HSS change in monthly rate of high-risk pregnancies referred increased slightly in intervention compared to control HC (0.03/10,000, 95% CI: [-0.007, 0.06]). There was a small immediate post-HSS increase in outpatient visit rates in intervention compared to control HC (6.64/1,000, 95% CI: [-13.52, 26.81]).ConclusionWe failed to find strong evidence of post-HSS increases in outpatient visit rates or referral rates at health centers, which could be explained by small sample size and high baseline nation-wide health service coverage. However, our findings demonstrate that high quality routinely collected health facility data combined with ITS can be used for rigorous policy evaluation in resource-limited settings.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…