• Am J Sports Med · Aug 2021

    Head Impact Biomechanics in Youth Flag Football: A Prospective Cohort Study.

    • Landon B Lempke, Rachel S Johnson, Rachel K Le, Melissa N Anderson, Julianne D Schmidt, and Robert C Lynall.
    • UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens, Georgia, USA.
    • Am J Sports Med. 2021 Aug 1; 49 (10): 2817-2826.

    BackgroundYouth flag football participation has rapidly grown and is a potentially safer alternative to tackle football. However, limited research has quantitatively assessed youth flag football head impact biomechanics.PurposeTo describe head impact biomechanics outcomes in youth flag football and explore factors associated with head impact magnitudes.Study DesignCross-sectional study; Level of evidence, 3.MethodsWe monitored 52 player-seasons among 48 male flag football players (mean ± SD; age, 9.4 ± 1.1 years; height, 138.6 ± 9.5 cm; mass, 34.7 ± 9.2 kg) across 3 seasons using head impact sensors during practices and games. Sensors recorded head impact frequencies, peak linear (g) and rotational (rad/s2) acceleration, and estimated impact location. Impact rates (IRs) were calculated as 1 impact per 10 player-exposures; IR ratios (IRRs) were used to compare season, event type, and age group IRs; and 95% CIs were calculated for IRs and IRRs. Weekly and seasonal cumulative head impact frequencies and magnitudes were calculated. Mixed-model regression models examined the association between player characteristics, event type, and seasons and peak linear and rotational accelerations.ResultsA total of 429 head impacts from 604 exposures occurred across the study period (IR, 7.10; 95% CI, 4.81-10.50). Weekly and seasonal cumulative median head impact frequencies were 1.00 (range, 0-2.63) and 7.50 (range, 0-21.00), respectively. The most frequent estimated head impact locations were the skull base (n = 96; 22.4%), top of the head (n = 74; 17.2%), and back of the head (n = 66; 15.4%). The combined event type IRs differed among the 3 seasons (IRR range, 1.45-2.68). Games produced greater IRs (IRR, 1.24; 95% CI, 1.01-1.53) and peak linear acceleration (mean difference, 5.69g; P = .008) than did practices. Older players demonstrated greater combined event-type IRs (IRR, 1.46; 95% CI, 1.12-1.90) and increased head impact magnitudes than did younger players, with every 1-year age increase associated with a 3.78g and 602.81-rad/s2 increase in peak linear and rotational acceleration magnitude, respectively (P≤ .005).ConclusionHead IRs and magnitudes varied across seasons, thus highlighting multiple season and cohort data are valuable when providing estimates. Head IRs were relatively low across seasons, while linear and rotational acceleration magnitudes were relatively high.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…