• Behav. Brain Res. · Jan 2016

    Comparative Study

    The neural substrates for the rewarding and dopamine-releasing effects of medial forebrain bundle stimulation have partially discrepant frequency responses.

    • M-P Cossette, K Conover, and P Shizgal.
    • Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Concordia University, 7141 Sherbrooke Street West, SP-244, Montréal, Québec H4B 1R6, Canada. Electronic address: mpy_cossette@hotmail.com.
    • Behav. Brain Res. 2016 Jan 15; 297: 345-58.

    AbstractMidbrain dopamine neurons have long been implicated in the rewarding effect produced by electrical brain stimulation of the medial forebrain bundle (MFB). These neurons are excited trans-synaptically, but their precise role in intracranial self-stimulation (ICSS) has yet to be determined. This study assessed the hypothesis that midbrain dopamine neurons are in series with the directly stimulated substrate for self-stimulation of the MFB and either perform spatio-temporal integration of synaptic input from directly activated MFB fibers or relay the results of such integration to efferent stages of the reward circuitry. Psychometric current-frequency trade-off functions were derived from ICSS performance, and chemometric trade-off functions were derived from stimulation-induced dopamine transients in the nucleus accumbens (NAc) shell, measured by means of fast-scan cyclic voltammetry. Whereas the psychometric functions decline monotonically over a broad range of pulse frequencies and level off only at high frequencies, the chemometric functions obtained with the same rats and electrodes are either U-shaped or level off at lower pulse frequencies. This discrepancy was observed when the dopamine transients were recorded in either anesthetized or awake subjects. The lack of correspondence between the psychometric and chemometric functions is inconsistent with the hypothesis that dopamine neurons projecting to the NAc shell constitute an entire series stage of the neural circuit subserving self-stimulation of the MFB. Copyright © 2015 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.