-
- Wei-Ting Lin, Tsung-Yu Wu, Yen-Ju Chen, Yu-Shan Chang, Chyi-Her Lin, and Yuh-Jyh Lin.
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan, Taiwan.
- J Formos Med Assoc. 2022 Jun 1; 121 (6): 1141-1148.
Background/PurposeThe in-hospital length of stay (LOS) among very-low-birth-weight (VLBW, BW < 1500 g) infants is an index for care quality and affects medical resource allocation. We aimed to analyze the LOS among VLBW infants in Taiwan, and to develop and compare the performance of different LOS prediction models using machine learning (ML) techniques.MethodsThis retrospective study illustrated LOS data from VLBW infants born between 2016 and 2018 registered in the Taiwan Neonatal Network. Among infants discharged alive, continuous variables (LOS or postmenstrual age, PMA) and categorical variables (late and non-late discharge group) were used as outcome variables to build prediction models. We used 21 early neonatal variables and six algorithms. The performance was compared using the coefficient of determination (R2) for continuous variables and area under the curve (AUC) for categorical variables.ResultsA total of 3519 VLBW infants were included to illustrate the profile of LOS. We found 59% of mortalities occurred within the first 7 days after birth. The median of LOS among surviving and deceased infants was 62 days and 5 days. For the ML prediction models, 2940 infants were enrolled. Prediction of LOS or PMA had R2 values less than 0.6. Among the prediction models for prolonged LOS, the logistic regression (ROC: 0.724) and random forest (ROC: 0.712) approach had better performance.ConclusionWe provide a benchmark of LOS among VLBW infants in each gestational age group in Taiwan. ML technique can improve the accuracy of the prediction model of prolonged LOS of VLBW.Copyright © 2021 Formosan Medical Association. Published by Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.