• Spine · Aug 2002

    Comparative Study

    Biomechanical analysis of biodegradable interbody fusion cages augmented With poly(propylene glycol-co-fumaric acid).

    • Frank Kandziora, R Pflugmacher, R Kleemann, Georg Duda, Donald L Wise, Debra J Trantolo, and Kai-Uwe Lewandrowski.
    • Unfall- und Wiederherstellungschirurgie, Universitätsklinikum Charité der Humboldt Universität Berlin, Campus Virchow-Klinikum, Berlin, Germany.
    • Spine. 2002 Aug 1; 27 (15): 1644-51.

    Study DesignThree different types of biodegradable poly(L-lactide-co-D,L-lactide) cages with and without augmentation of a biodegradable poly(propylene glycol-cofumaric acid) scaffold were compared with autograft and metallic cages of the same design and size by determining the stiffness and failure load of the L4-L5 motion segment of cadaveric human spines.ObjectivesTo determine how these devices limit the range of motion in the lumbar spine compared with a metallic cage. If biomechanically equivalent, biodegradable spinal fusion systems ultimately could reduce local stress shielding and diminish the incidence of clinical complications, including device-related osteopenia, implant loosening, and breakage.Summary Of Background DataPrevious studies in dogs and humans have demonstrated vertebral body osteopenia as a result of instrumented spine fusions. To the authors' knowledge, neither an in vitro nor an in vivo biomechanical analysis of a biodegradable interbody fusion system has been performed.MethodsForty-eight L4-L5 motion segments were isolated from 22 male and 26 female human donors with an average age of 49.6 +/- 2.7 years (range 36-55 years). Cages of similar dimensions and design, including a threaded, hollow, porous titanium BAK cage and three different BIO cages (BIO cage 1, pure polymer; BIO cage 2, polymer plus hydroxyapatite buffer; BIO cage 3, polymer plus nano-sized hydroxyapatite), produced from the same poly(L-lactide-co-D,L-lactide) polymer were tested in a comparative analysis to intact motion segment, interbody implantation of autograft, and a BIO cage augmented with an expandable biodegradable foam-scaffold fashioned from poly(propylene glycol-cofumaric acid).ResultsAll cages were able to increase stiffness and failure load of the unstable motion segment significantly (P < 0.01). In comparison with the bone graft, the BAK cage (P < 0.01) and BIO cages 1 and 3 (P < 0.05) were able to increase stiffness and failure load. There was no significant difference between BIO cage 2 and the bone graft. Augmentation of BIO cage 1 with the foaming PPF scaffold resulted in higher stiffness and similar failure load as seen with the BAK cage.ConclusionBy comparison, the in vitro lumbar spinal motion segment stiffness and failure load produced by implantation of a biodegradable interbody fusion cage augmented with an expandable PPF scaffold is similar to that of the titanium BAK cage. This suggests that biodegradable anterior interbody fusion systems could be further developed for clinical applications.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.