-
- Patrick McCunn, Kyle M Gilbert, Peter Zeman, Alex X Li, Michael J Strong, Ali R Khan, and Robert Bartha.
- Center for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
- Plos One. 2019 Jan 1; 14 (4): e0215974.
PurposeNeurite Orientation Dispersion and Density Imaging (NODDI) is a diffusion MRI (dMRI) technique used to characterize tissue microstructure by compartmental modelling of neural water fractions. Intra-neurite, extra-neurite, and cerebral spinal fluid volume fractions are measured. The purpose of this study was to determine the reproducibility of NODDI in the rat brain at 9.4 Tesla.MethodsEight data sets were successfully acquired on adult male Sprague Dawley rats. Each rat was scanned twice on a 9.4T Agilent MRI with a 7 ± 1 day separation between scans. A multi-shell diffusion protocol was implemented consisting of 108 total directions varied over two shells (b-values of 1000 s/mm2 and 2000 s/mm2). Three techniques were used to analyze the NODDI scalar maps: mean region of interest (ROI) analysis, whole brain voxel-wise analysis, and targeted ROI analyses (voxel-wise within a given ROI). The coefficient of variation (CV) was used to assess the reproducibility of NODDI and provide insight into necessary sample sizes and minimum detectable effect size.ResultsCV maps for orientation dispersion index (ODI) and neurite density index (NDI) showed high reproducibility both between and within subjects. Furthermore, it was found that small biological changes (<5%) may be detected with feasible sample sizes (n < 6-10). In contrast, isotropic volume fraction (IsoVF) was found to have low reproducibility, requiring very large sample sizes (n > 50) for biological changes to be detected.ConclusionsThe ODI and NDI measured by NODDI in the rat brain at 9.4T are highly reproducible and may be sensitive to subtle changes in tissue microstructure.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.