-
- Giles T Hanley-Cook, Inge Huybrechts, Carine Biessy, Roseline Remans, Gina Kennedy, Mélanie Deschasaux-Tanguy, Kris A Murray, Mathilde Touvier, Guri Skeie, Emmanuelle Kesse-Guyot, Alemayehu Argaw, Corinne Casagrande, Geneviève Nicolas, Paolo Vineis, Christopher J Millett, Elisabete Weiderpass, Pietro Ferrari, Christina C Dahm, H Bas Bueno-de-Mesquita, Torkjel M Sandanger, Daniel B Ibsen, Heinz Freisling, Stina Ramne, Franziska Jannasch, Yvonne T van der Schouw, Matthias B Schulze, Konstantinos K Tsilidis, Anne Tjønneland, Eva Ardanaz, Stina Bodén, Lluís Cirera, Giuliana Gargano, Jytte Halkjær, Paula Jakszyn, Ingegerd Johansson, Verena Katzke, Giovanna Masala, Salvatore Panico, Miguel Rodriguez-Barranco, Carlotta Sacerdote, Bernard Srour, Rosario Tumino, Elio Riboli, Marc J Gunter, Andrew D Jones, and Carl Lachat.
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
- PLoS Med. 2021 Oct 1; 18 (10): e1003834e1003834.
BackgroundFood biodiversity, encompassing the variety of plants, animals, and other organisms consumed as food and drink, has intrinsic potential to underpin diverse, nutritious diets and improve Earth system resilience. Dietary species richness (DSR), which is recommended as a crosscutting measure of food biodiversity, has been positively associated with the micronutrient adequacy of diets in women and young children in low- and middle-income countries (LMICs). However, the relationships between DSR and major health outcomes have yet to be assessed in any population.Methods And FindingsWe examined the associations between DSR and subsequent total and cause-specific mortality among 451,390 adults enrolled in the European Prospective Investigation into Cancer and Nutrition (EPIC) study (1992 to 2014, median follow-up: 17 years), free of cancer, diabetes, heart attack, or stroke at baseline. Usual dietary intakes were assessed at recruitment with country-specific dietary questionnaires (DQs). DSR of an individual's yearly diet was calculated based on the absolute number of unique biological species in each (composite) food and drink. Associations were assessed by fitting multivariable-adjusted Cox proportional hazards regression models. In the EPIC cohort, 2 crops (common wheat and potato) and 2 animal species (cow and pig) accounted for approximately 45% of self-reported total dietary energy intake [median (P10-P90): 68 (40 to 83) species consumed per year]. Overall, higher DSR was inversely associated with all-cause mortality rate. Hazard ratios (HRs) and 95% confidence intervals (CIs) comparing total mortality in the second, third, fourth, and fifth (highest) quintiles (Qs) of DSR to the first (lowest) Q indicate significant inverse associations, after stratification by sex, age, and study center and adjustment for smoking status, educational level, marital status, physical activity, alcohol intake, and total energy intake, Mediterranean diet score, red and processed meat intake, and fiber intake [HR (95% CI): 0.91 (0.88 to 0.94), 0.80 (0.76 to 0.83), 0.69 (0.66 to 0.72), and 0.63 (0.59 to 0.66), respectively; PWald < 0.001 for trend]. Absolute death rates among participants in the highest and lowest fifth of DSR were 65.4 and 69.3 cases/10,000 person-years, respectively. Significant inverse associations were also observed between DSR and deaths due to cancer, heart disease, digestive disease, and respiratory disease. An important study limitation is that our findings were based on an observational cohort using self-reported dietary data obtained through single baseline food frequency questionnaires (FFQs); thus, exposure misclassification and residual confounding cannot be ruled out.ConclusionsIn this large Pan-European cohort, higher DSR was inversely associated with total and cause-specific mortality, independent of sociodemographic, lifestyle, and other known dietary risk factors. Our findings support the potential of food (species) biodiversity as a guiding principle of sustainable dietary recommendations and food-based dietary guidelines.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.