-
- Maulin K Shah, Wanyong Shin, Jessy Mouannes, Ali Shaibani, Sandra W Horowitz, and Timothy J Carroll.
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA.
- J Magn Reson Imaging. 2008 Nov 1; 28 (5): 1258-65.
PurposeTo evaluate an algorithm based on algebraic estimation of T1 values (three-point estimation) in comparison with computational curve-fitting for the postprocessing of quantitative cerebral perfusion scans.Materials And MethodsComputer simulations were performed to quantify the magnitude of the expected error on T1 and consequently cerebral perfusion using the three-point estimation technique on a Look-Locker (LL) EPI scan. In 50 patients, quantitative cerebral perfusion was calculated using the bookend method with three-point estimation and curve-fitting. The bookend method, a novel approach for calculating quantitative cerebral perfusion based on changes in T1 values after a contrast injection, is currently being validated. The number of computations was used as a measure of computation speed for each method. Student's paired t-test, Bland-Altman, and correlation analyses were performed to evaluate the accuracy of estimation.ResultsThere was a 99.65% reduction in the number of computations with three-point estimation. Student's t-test showed no significant difference in cerebral perfusion (P=0.80, 0.49, paired t-test N=50, quantitative cerebral blood flow-white matter [qCBF-WM], qCBF-gray matter [qCBF-GM]) when compared to curve-fitting. The results of the two techniques were strongly correlated in patients (slope=0.99, intercept=1.58 mL/(100 g/minute), r=0.86) with a small systemic bias of -0.97 mL/(100 g/minute) in Bland-Altman analysis.ConclusionThe three-point estimation technique is adequate for rapid calculation of qCBF. The estimation scheme drastically reduces processing time, thus making the method feasible for clinical use.Copyright (c) 2008 Wiley-Liss, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.