• J. Mol. Med. · Mar 2020

    Intravascular adhesion and recruitment of neutrophils in response to CXCL1 depends on their TRPC6 channels.

    • Otto Lindemann, Jan Rossaint, Karolina Najder, Sandra Schimmelpfennig, Verena Hofschröer, Mike Wälte, Benedikt Fels, Hans Oberleithner, Alexander Zarbock, and Albrecht Schwab.
    • Institute of Physiology II, Westfälische Wilhelms-Universität, Münster, Germany.
    • J. Mol. Med. 2020 Mar 1; 98 (3): 349-360.

    AbstractHere we report a novel role for TRPC6, a member of the transient receptor potential (TRPC) channel family, in the CXCL1-dependent recruitment of murine neutrophil granulocytes. Representing a central element of the innate immune system, neutrophils are recruited from the blood stream to a site of inflammation. The recruitment process follows a well-defined sequence of events including adhesion to the blood vessel walls, migration, and chemotaxis to reach the inflammatory focus. A common feature of the underlying signaling pathways is the utilization of Ca2+ ions as intracellular second messengers. However, the required Ca2+ influx channels are not yet fully characterized. We used WT and TRPC6-/- neutrophils for in vitro and TRPC6-/- chimeric mice (WT mice with WT or TRPC6-/- bone marrow cells) for in vivo studies. After renal ischemia and reperfusion injury, TRPC6-/- chimeric mice had an attenuated TRPC6-/- neutrophil recruitment and a better outcome as judged from the reduced increase in the plasma creatinine concentration. In the cremaster model CXCL1-induced neutrophil adhesion, arrest and transmigration were also decreased in chimeric mice with TRPC6-/- neutrophils. Using atomic force microscopy and microfluidics, we could attribute the recruitment defect of TRPC6-/- neutrophils to the impact of the channel on adhesion to endothelial cells. Mechanistically, TRPC6-/- neutrophils exhibited lower Ca2+ transients during the initial adhesion leading to diminished Rap1 and β2 integrin activation and thereby reduced ICAM-1 binding. In summary, our study reveals that TRPC6 channels in neutrophils are crucial signaling modules in their recruitment from the blood stream in response to CXCL1. KEY POINT: Neutrophil TRPC6 channels are crucial for CXCL1-triggered activation of integrins during the initial steps of neutrophil recruitment.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.