• JAMA network open · Nov 2019

    Attention-Based Deep Neural Networks for Detection of Cancerous and Precancerous Esophagus Tissue on Histopathological Slides.

    • Naofumi Tomita, Behnaz Abdollahi, Jason Wei, Bing Ren, Arief Suriawinata, and Saeed Hassanpour.
    • Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire.
    • JAMA Netw Open. 2019 Nov 1; 2 (11): e1914645.

    ImportanceDeep learning-based methods, such as the sliding window approach for cropped-image classification and heuristic aggregation for whole-slide inference, for analyzing histological patterns in high-resolution microscopy images have shown promising results. These approaches, however, require a laborious annotation process and are fragmented.ObjectiveTo evaluate a novel deep learning method that uses tissue-level annotations for high-resolution histological image analysis for Barrett esophagus (BE) and esophageal adenocarcinoma detection.Design, Setting, And ParticipantsThis diagnostic study collected deidentified high-resolution histological images (N = 379) for training a new model composed of a convolutional neural network and a grid-based attention network. Histological images of patients who underwent endoscopic esophagus and gastroesophageal junction mucosal biopsy between January 1, 2016, and December 31, 2018, at Dartmouth-Hitchcock Medical Center (Lebanon, New Hampshire) were collected.Main Outcomes And MeasuresThe model was evaluated on an independent testing set of 123 histological images with 4 classes: normal, BE-no-dysplasia, BE-with-dysplasia, and adenocarcinoma. Performance of this model was measured and compared with that of the current state-of-the-art sliding window approach using the following standard machine learning metrics: accuracy, recall, precision, and F1 score.ResultsOf the independent testing set of 123 histological images, 30 (24.4%) were in the BE-no-dysplasia class, 14 (11.4%) in the BE-with-dysplasia class, 21 (17.1%) in the adenocarcinoma class, and 58 (47.2%) in the normal class. Classification accuracies of the proposed model were 0.85 (95% CI, 0.81-0.90) for the BE-no-dysplasia class, 0.89 (95% CI, 0.84-0.92) for the BE-with-dysplasia class, and 0.88 (95% CI, 0.84-0.92) for the adenocarcinoma class. The proposed model achieved a mean accuracy of 0.83 (95% CI, 0.80-0.86) and marginally outperformed the sliding window approach on the same testing set. The F1 scores of the attention-based model were at least 8% higher for each class compared with the sliding window approach: 0.68 (95% CI, 0.61-0.75) vs 0.61 (95% CI, 0.53-0.68) for the normal class, 0.72 (95% CI, 0.63-0.80) vs 0.58 (95% CI, 0.45-0.69) for the BE-no-dysplasia class, 0.30 (95% CI, 0.11-0.48) vs 0.22 (95% CI, 0.11-0.33) for the BE-with-dysplasia class, and 0.67 (95% CI, 0.54-0.77) vs 0.58 (95% CI, 0.44-0.70) for the adenocarcinoma class. However, this outperformance was not statistically significant.Conclusions And RelevanceResults of this study suggest that the proposed attention-based deep neural network framework for BE and esophageal adenocarcinoma detection is important because it is based solely on tissue-level annotations, unlike existing methods that are based on regions of interest. This new model is expected to open avenues for applying deep learning to digital pathology.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.