• Plos One · Apr 2011

    Clinical Trial

    Dose effects of oxaliplatin on persistent and transient Na+ conductances and the development of neurotoxicity.

    • Susanna B Park, Cindy S-Y Lin, Arun V Krishnan, David Goldstein, Michael L Friedlander, and Matthew C Kiernan.
    • Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
    • Plos One. 2011 Apr 8; 6 (4): e18469.

    BackgroundOxaliplatin, a platinum-based chemotherapy utilised in the treatment of colorectal cancer, produces two forms of neurotoxicity--acute sensorimotor neuropathic symptoms and a dose-limiting chronic sensory neuropathy. Given that a Na(+) channelopathy has been proposed as the mechanism underlying acute oxaliplatin-induced neuropathy, the present study aimed to determine specific mechanisms of Na(+) channel dysfunction.Methodology/Principal FindingsSpecifically the function of transient and persistent Na(+) currents were followed during treatment and were investigated in relation to oxaliplatin dose level. Eighteen patients were assessed before and after a single oxaliplatin infusion with motor and sensory axonal excitability studies performed on the median nerve at the wrist. While refractoriness (associated with Na(+) channel inactivation) was significantly altered post-oxaliplatin infusion in both motor (Pre: 31.7±6.4%; Post: 68.8±14.5%; P≤.001) and sensory axons (Pre: 31.4±5.4%; Post: 21.4±5.5%; P<.05), strength-duration time constant (marker of persistent Na(+) conductances) was not significantly altered post-infusion (Motor Pre: 0.395±0.01 ms; Post: 0.394±0.02 ms; NS; Sensory Pre:0.544±0.03 ms; Post: 0.535±0.05 ms; NS). However, changes in strength-duration time constant were significantly correlated with changes in refractoriness in motor and sensory axons (Motor correlation coefficient = -.65; P<.05; Sensory correlation coefficient = .67; P<.05).Conclusions/SignificanceIt is concluded that the predominant effect of acute oxaliplatin exposure in human motor and sensory axons is mediated through changes in transient rather than persistent Na(+) conductances. These findings are likely to have implications for the design and trial of neuroprotective strategies.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.