• J Ethnopharmacol · Jun 2019

    Mitochondrial dynamics modulation as a critical contribution for Shenmai injection in attenuating hypoxia/reoxygenation injury.

    • Jiahui Yu, Yuhong Li, Xinyan Liu, Zhe Ma, Sarhene Michael, John O Orgah, Guanwei Fan, and Yan Zhu.
    • Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Research and Development Center of CM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
    • J Ethnopharmacol. 2019 Jun 12; 237: 9-19.

    Ethnopharmacological RelevanceShenmai injection (SMI) is a CFDA-approved and widely prescribed herbal medicine injection in China for treating cardiac dysfunction, especially myocardial ischemia and reperfusion (I/R) injury. However, despite of its known clinical efficacy, the cardioprotective mechanisms of SMI remain to be established.Aim Of StudyThe present study aimed to investigate the role of SMI on mitophagy and mitochondrial dynamics in cardiomyocytes with a hypoxia/reperfusion (H/R) injury setting.Materials And MethodsH9c2 cardiomyocytes were subjected to 12 h of hypoxia followed by 2 h of reoxygenation to induce cellular injury. Multi-parameter imaging analysis was performed using Operetta High Content Imaging System to detect changes in mitochondrial function and morphological texture. The mPTP opening was directly assessed by analyzing mitochondrial calcein release in H9c2 and by Ca2+-induced swelling of isolated cardiac mitochondria. Mitochondrial respiration was measured by XF 24 analyzer of Seahorse Bioscience. RT-PCR and Western blotting analyses were used to detect mitophagy, mitochondrial fusion and fission biomarkers at the gene and protein levels.ResultsPretreatment of SMI significantly improved myocardial cell survival and protected against H/R-induced deterioration of mitochondrial structure and function, as evidenced by decreased mitochondrial mass and cytosolic Ca2+, increased mitochondrial membrane potential (ΔΨm) and mitochondrial morphology by SER Texture analysis, inhibited mPTP opening in H9c2 cells and isolated cardiac mitochondria, and alleviated severely impaired mitochondrial respiration. Mechanistically, SMI attenuated H/R injury by inducing mitophagy and then modulated mitochondrial dynamics as indicated by a significantly increased expression of LC3, Beclin 1, Parkin and Pink, and the inhibition of excessive mitochondria fission and increased mitochondrial fusion. Finally, the cardioprotective effect of SMI was confirmed in a LAD-induced cardiac dysfunction model in vivo.ConclusionWe found that alleviation of H/R injury by pretreatment with SMI may be attributable to inducing mitophagy and modulating mitochondrial dynamics in cardiomyocytes, thereby providing a rationale for future clinical applications and potential mitoprotective therapy for MI/R injury.Copyright © 2019. Published by Elsevier B.V.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.