• Cochrane Db Syst Rev · Oct 2021

    Review Meta Analysis

    Dipeptidyl peptidase-4 inhibitors, glucagon-like peptide 1 receptor agonists and sodium-glucose co-transporter-2 inhibitors for people with cardiovascular disease: a network meta-analysis.

    • Takayoshi Kanie, Atsushi Mizuno, Yoshimitsu Takaoka, Takahiro Suzuki, Daisuke Yoneoka, Yuri Nishikawa, TamWilson Wai SanWWSAlice Lee Center for Nursing Studies, NUS Yong Loo Lin School of Medicine, Singapore, Singapore., Jakub Morze, Andrzej Rynkiewicz, Yiqiao Xin, Olivia Wu, Rui Providencia, and Joey Sw Kwong.
    • Department of Cardiology, St. Luke's International Hospital, Tokyo, Japan.
    • Cochrane Db Syst Rev. 2021 Oct 25; 10 (10): CD013650CD013650.

    BackgroundCardiovascular disease (CVD) is a leading cause of death globally. Recently, dipeptidyl peptidase-4 inhibitors (DPP4i), glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium-glucose co-transporter-2 inhibitors (SGLT2i) were approved for treating people with type 2 diabetes mellitus. Although metformin remains the first-line pharmacotherapy for people with type 2 diabetes mellitus, a body of evidence has recently emerged indicating that DPP4i, GLP-1RA and SGLT2i may exert positive effects on patients with known CVD.ObjectivesTo systematically review the available evidence on the benefits and harms of DPP4i, GLP-1RA, and SGLT2i in people with established CVD, using network meta-analysis.Search MethodsWe searched CENTRAL, MEDLINE, Embase, and the Conference Proceedings Citation Index on 16 July 2020. We also searched clinical trials registers on 22 August 2020. We did not restrict by language or publication status.Selection CriteriaWe searched for randomised controlled trials (RCTs) investigating DPP4i, GLP-1RA, or SGLT2i that included participants with established CVD. Outcome measures of interest were CVD mortality, fatal and non-fatal myocardial infarction, fatal and non-fatal stroke, all-cause mortality, hospitalisation for heart failure (HF), and safety outcomes.Data Collection And AnalysisThree review authors independently screened the results of searches to identify eligible studies and extracted study data. We used the GRADE approach to assess the certainty of the evidence. We conducted standard pairwise meta-analyses and network meta-analyses by pooling studies that we assessed to be of substantial homogeneity; subgroup and sensitivity analyses were also pursued to explore how study characteristics and potential effect modifiers could affect the robustness of our review findings. We analysed study data using the odds ratios (ORs) and log odds ratios (LORs) with their respective 95% confidence intervals (CIs) and credible intervals (Crls), where appropriate. We also performed narrative synthesis for included studies that were of substantial heterogeneity and that did not report quantitative data in a usable format, in order to discuss their individual findings and relevance to our review scope.Main ResultsWe included 31 studies (287 records), of which we pooled data from 20 studies (129,465 participants) for our meta-analysis. The majority of the included studies were at low risk of bias, using Cochrane's tool for assessing risk of bias. Among the 20 pooled studies, six investigated DPP4i, seven studied GLP-1RA, and the remaining seven trials evaluated SGLT2i. All outcome data described below were reported at the longest follow-up duration. 1. DPP4i versus placebo Our review suggests that DPP4i do not reduce any risk of efficacy outcomes: CVD mortality (OR 1.00, 95% CI 0.91 to 1.09; high-certainty evidence), myocardial infarction (OR 0.97, 95% CI 0.88 to 1.08; high-certainty evidence), stroke (OR 1.00, 95% CI 0.87 to 1.14; high-certainty evidence), and all-cause mortality (OR 1.03, 95% CI 0.96 to 1.11; high-certainty evidence). DPP4i probably do not reduce hospitalisation for HF (OR 0.99, 95% CI 0.80 to 1.23; moderate-certainty evidence). DPP4i may not increase the likelihood of worsening renal function (OR 1.08, 95% CI 0.88 to 1.33; low-certainty evidence) and probably do not increase the risk of bone fracture (OR 1.00, 95% CI 0.83 to 1.19; moderate-certainty evidence) or hypoglycaemia (OR 1.11, 95% CI 0.95 to 1.29; moderate-certainty evidence). They are likely to increase the risk of pancreatitis (OR 1.63, 95% CI 1.12 to 2.37; moderate-certainty evidence). 2. GLP-1RA versus placebo Our findings indicate that GLP-1RA reduce the risk of CV mortality (OR 0.87, 95% CI 0.79 to 0.95; high-certainty evidence), all-cause mortality (OR 0.88, 95% CI 0.82 to 0.95; high-certainty evidence), and stroke (OR 0.87, 95% CI 0.77 to 0.98; high-certainty evidence). GLP-1RA probably do not reduce the risk of myocardial infarction (OR 0.89, 95% CI 0.78 to 1.01; moderate-certainty evidence), and hospitalisation for HF (OR 0.95, 95% CI 0.85 to 1.06; high-certainty evidence). GLP-1RA may reduce the risk of worsening renal function (OR 0.61, 95% CI 0.44 to 0.84; low-certainty evidence), but may have no impact on pancreatitis (OR 0.96, 95% CI 0.68 to 1.35; low-certainty evidence). We are uncertain about the effect of GLP-1RA on hypoglycaemia and bone fractures. 3. SGLT2i versus placebo This review shows that SGLT2i probably reduce the risk of CV mortality (OR 0.82, 95% CI 0.70 to 0.95; moderate-certainty evidence), all-cause mortality (OR 0.84, 95% CI 0.74 to 0.96; moderate-certainty evidence), and reduce the risk of HF hospitalisation (OR 0.65, 95% CI 0.59 to 0.71; high-certainty evidence); they do not reduce the risk of myocardial infarction (OR 0.97, 95% CI 0.84 to 1.12; high-certainty evidence) and probably do not reduce the risk of stroke (OR 1.12, 95% CI 0.92 to 1.36; moderate-certainty evidence). In terms of treatment safety, SGLT2i probably reduce the incidence of worsening renal function (OR 0.59, 95% CI 0.43 to 0.82; moderate-certainty evidence), and probably have no effect on hypoglycaemia (OR 0.90, 95% CI 0.75 to 1.07; moderate-certainty evidence) or bone fracture (OR 1.02, 95% CI 0.88 to 1.18; high-certainty evidence), and may have no impact on pancreatitis (OR 0.85, 95% CI 0.39 to 1.86; low-certainty evidence). 4. Network meta-analysis Because we failed to identify direct comparisons between each class of the agents, findings from our network meta-analysis provided limited novel insights. Almost all findings from our network meta-analysis agree with those from the standard meta-analysis. GLP-1RA may not reduce the risk of stroke compared with placebo (OR 0.87, 95% CrI 0.75 to 1.0; moderate-certainty evidence), which showed similar odds estimates and wider 95% Crl compared with standard pairwise meta-analysis. Indirect estimates also supported comparison across all three classes. SGLT2i was ranked the best for CVD and all-cause mortality.Authors' ConclusionsFindings from both standard and network meta-analyses of moderate- to high-certainty evidence suggest that GLP-1RA and SGLT2i are likely to reduce the risk of CVD mortality and all-cause mortality in people with established CVD; high-certainty evidence demonstrates that treatment with SGLT2i reduce the risk of hospitalisation for HF, while moderate-certainty evidence likely supports the use of GLP-1RA to reduce fatal and non-fatal stroke. Future studies conducted in the non-diabetic CVD population will reveal the mechanisms behind how these agents improve clinical outcomes irrespective of their glucose-lowering effects.Copyright © 2021 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.