• J. Med. Internet Res. · Jul 2017

    Randomized Controlled Trial

    Effectiveness of Digital Medicines to Improve Clinical Outcomes in Patients with Uncontrolled Hypertension and Type 2 Diabetes: Prospective, Open-Label, Cluster-Randomized Pilot Clinical Trial.

    • Juan Frias, Naunihal Virdi, Praveen Raja, Yoona Kim, George Savage, and Lars Osterberg.
    • National Research Institute, Los Angeles, CA, United States.
    • J. Med. Internet Res. 2017 Jul 11; 19 (7): e246.

    BackgroundHypertension and type 2 diabetes mellitus are major modifiable risk factors for cardiac, cerebrovascular, and kidney diseases. Reasons for poor disease control include nonadherence, lack of patient engagement, and therapeutic inertia.ObjectiveThe aim of this study was to assess the impact on clinic-measured blood pressure (BP) and glycated hemoglobin (HbA1c) using a digital medicine offering (DMO) that measures medication ingestion adherence, physical activity, and rest using digital medicines (medication taken with ingestible sensor), wearable sensor patches, and a mobile device app.MethodsParticipants with elevated systolic BP (SBP ≥140 mm Hg) and HbA1c (≥7%) failing antihypertensive (≥2 medications) and oral diabetes therapy were enrolled in this three-arm, 12-week, cluster-randomized study. Participants used DMO (includes digital medicines, the wearable sensor patch, and the mobile device app) for 4 or 12 weeks or received usual care based on site randomization. Providers in the DMO arms could review the DMO data via a Web portal. In all three arms, providers were instructed to make medical decisions (medication titration, adherence counseling, education, and lifestyle coaching) on all available clinical information at each visit. Primary outcome was change in SBP at week 4. Other outcomes included change in SBP and HbA1c at week 12, and low-density lipoprotein cholesterol (LDL-C) and diastolic blood pressure (DBP) at weeks 4 and 12, as well as proportion of patients at BP goal (<140/90 mm Hg) at weeks 4 and 12, medical decisions, and medication adherence patterns.ResultsFinal analysis included 109 participants (12 sites; age: mean 58.7, SD years; female: 49.5%, 54/109; Hispanic: 45.9%, 50/109; income ≤ US $20,000: 56.9%, 62/109; and ≤ high school education: 52.3%, 57/109). The DMO groups had 80 participants (7 sites) and usual care had 29 participants (5 sites). At week 4, DMO resulted in a statistically greater SBP reduction than usual care (mean -21.8, SE 1.5 mm Hg vs mean -12.7, SE 2.8 mmHg; mean difference -9.1, 95% CI -14.0 to -3.3 mm Hg) and maintained a greater reduction at week 12. The DMO groups had greater reductions in HbA1c, DBP, and LDL-C, and a greater proportion of participants at BP goal at weeks 4 and 12 compared with usual care. The DMO groups also received more therapeutic interventions than usual care. Medication adherence was ≥80% while using the DMO. The most common adverse event was a self-limited rash at the wearable sensor site (12%, 10/82).ConclusionsFor patients failing hypertension and diabetes oral therapy, this DMO, which provides dose-by-dose feedback on medication ingestion adherence, can help lower BP, HbA1c, and LDL-C, and promote patient engagement and provider decision making.Trial RegistrationClinicaltrials.gov NCT02827630; https://clinicaltrials.gov/show/NCT02827630 (Archived by WebCite at http://www.webcitation.org/6rL8dW2VF).©Juan Frias, Naunihal Virdi, Praveen Raja, Yoona Kim, George Savage, Lars Osterberg. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 11.07.2017.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…