-
Blood Coagul. Fibrinolysis · Jun 2012
Hypothermic anticoagulation: testing individual responses to graded severe hypothermia with thromboelastography.
- Jiri Ruzicka, Milan Stengl, Lukas Bolek, Jiri Benes, Martin Matejovic, and Ales Krouzecky.
- Department of Biophysics, Faculty of Medicine in Pilsen, Charles University in Prague, Czech Republic.
- Blood Coagul. Fibrinolysis. 2012 Jun 1; 23 (4): 285-9.
AbstractSelective incircuit blood cooling could be an effective anticoagulation strategy during hemodialysis. However, it is currently unknown what blood temperature would ensure sufficient anticoagulation. Similarly, no information exists about potential interindividual variability in response to graded hypothermia. Therefore, the aim of this study was to analyze effects of profound hypothermia on human coagulation. Furthermore, a mathematical relationship between blood temperatures and coagulation was sought to predict individual responses to blood cooling. It was designed as a laboratory study. Thromboelastography (TEG) measurements were taken at a temperature range of 38-12°C. To enable measurements below 20°C, the TEG device was placed into an air conditioned chamber allowing for setting of the temperatures over a wide range. The data were analyzed by regression analysis for pooled and individual measurements. Decreasing temperatures always led to a progressive reduction in blood coagulation by delaying the initiation of thrombus formation, as well as by decreasing the speed of its creation and growth. However, the response to cooling was not uniform and the interindividual variability exists. The relationship between blood temperature and coagulation is not linear but exponential (parameters R and K) and sigmoid (parameter α-angle). The lower the blood temperature, the more significant effect on blood coagulation decline. To predict an individual response of the coagulation system over a wide range of temperatures, a mathematical modeling can be used.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.