-
J. Med. Internet Res. · Jan 2021
Prevalence of Health Misinformation on Social Media: Systematic Review.
- Victor Suarez-Lledo and Javier Alvarez-Galvez.
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz, Cadiz, Spain.
- J. Med. Internet Res. 2021 Jan 20; 23 (1): e17187.
BackgroundAlthough at present there is broad agreement among researchers, health professionals, and policy makers on the need to control and combat health misinformation, the magnitude of this problem is still unknown. Consequently, it is fundamental to discover both the most prevalent health topics and the social media platforms from which these topics are initially framed and subsequently disseminated.ObjectiveThis systematic review aimed to identify the main health misinformation topics and their prevalence on different social media platforms, focusing on methodological quality and the diverse solutions that are being implemented to address this public health concern.MethodsWe searched PubMed, MEDLINE, Scopus, and Web of Science for articles published in English before March 2019, with a focus on the study of health misinformation in social media. We defined health misinformation as a health-related claim that is based on anecdotal evidence, false, or misleading owing to the lack of existing scientific knowledge. We included (1) articles that focused on health misinformation in social media, including those in which the authors discussed the consequences or purposes of health misinformation and (2) studies that described empirical findings regarding the measurement of health misinformation on these platforms.ResultsA total of 69 studies were identified as eligible, and they covered a wide range of health topics and social media platforms. The topics were articulated around the following six principal categories: vaccines (32%), drugs or smoking (22%), noncommunicable diseases (19%), pandemics (10%), eating disorders (9%), and medical treatments (7%). Studies were mainly based on the following five methodological approaches: social network analysis (28%), evaluating content (26%), evaluating quality (24%), content/text analysis (16%), and sentiment analysis (6%). Health misinformation was most prevalent in studies related to smoking products and drugs such as opioids and marijuana. Posts with misinformation reached 87% in some studies. Health misinformation about vaccines was also very common (43%), with the human papilloma virus vaccine being the most affected. Health misinformation related to diets or pro-eating disorder arguments were moderate in comparison to the aforementioned topics (36%). Studies focused on diseases (ie, noncommunicable diseases and pandemics) also reported moderate misinformation rates (40%), especially in the case of cancer. Finally, the lowest levels of health misinformation were related to medical treatments (30%).ConclusionsThe prevalence of health misinformation was the highest on Twitter and on issues related to smoking products and drugs. However, misinformation on major public health issues, such as vaccines and diseases, was also high. Our study offers a comprehensive characterization of the dominant health misinformation topics and a comprehensive description of their prevalence on different social media platforms, which can guide future studies and help in the development of evidence-based digital policy action plans.©Victor Suarez-Lledo, Javier Alvarez-Galvez. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 20.01.2021.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.